Global approach in Candida manifestations

Pol de Saedeleer, R. Pharm. D.

Professional Disclosures

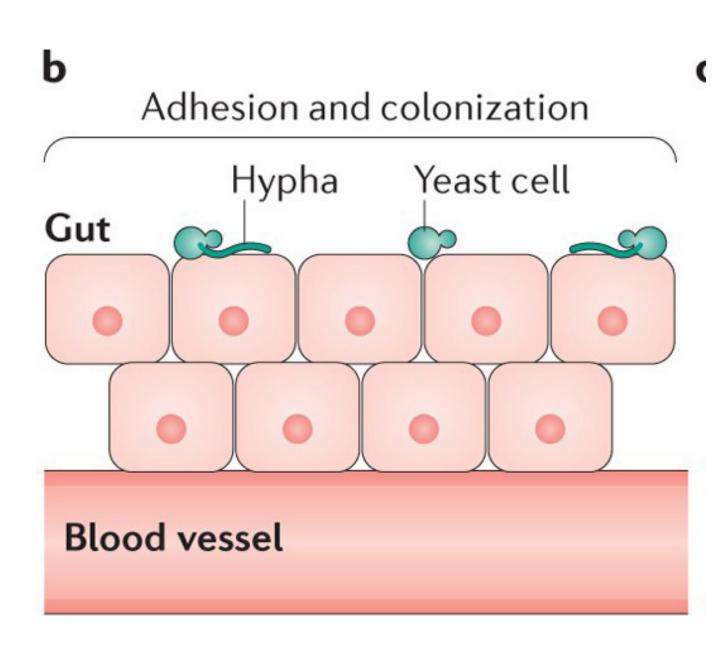
- Educational Board BSEM
 British Society Environment Medicine
- Past Board of directors ILADEF
 ILADS medical association
- Scientific Consultancy for various Clinics and Laboratories
- Medical Director Nutrined/ Researched Nutritionals

During our talks we respect the rule that statements need to be based on scientific references & scientific research

In order to make this clinical training as efficient as possible, the organizers have asked me to mention and name products and doses during the lectures. I hope this does not disturb you

Candida Infection Fungal infection can be caused by several candida spp.

Candida alb., most common (= the most prevalent Candida spp. Causing disease, number 2 in Europe and the States is C. glabrata)


local mucosal infections to fulminant sepsis with associated mortality

Candida is a yeast, but also a fungus

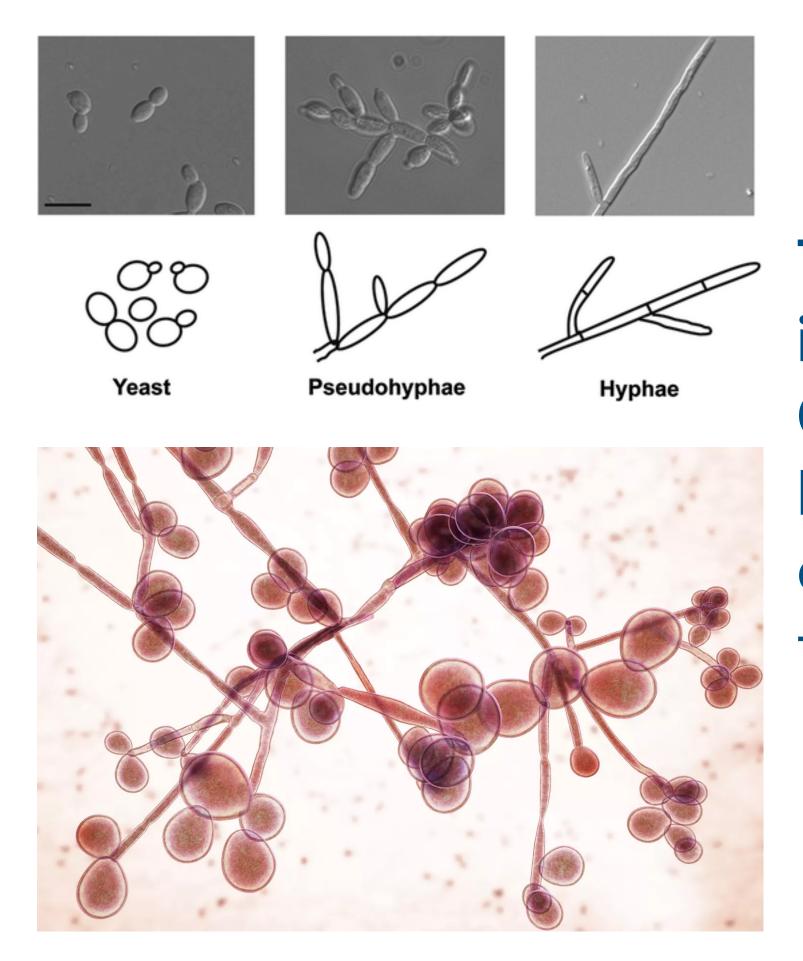
Aspergillus is a mold, but also a fungus

- Prevalence varies depending on geographical location Spectrum of disease ranges from ordinary symptoms in

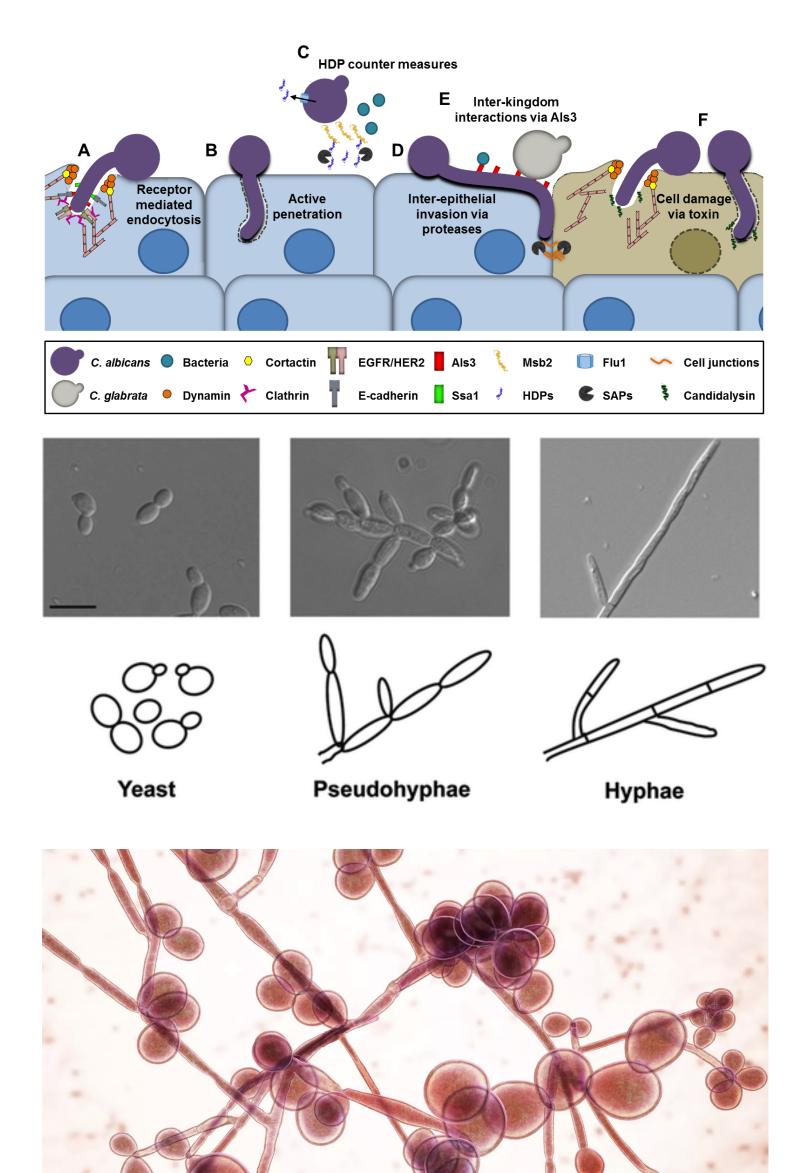
Candida spp. are commensal organisms they colonize asymptomatically in many areas of the body, particularly the gastrointestinal tract and the genital area.

harm or disease

Grubb, Sarah EW, et al. "Candida albicans-endothelial cell interactions: a key step in the pathogenesis of systemic candidiasis." Infection and immunity 76.10 (2008): 4370-4377.


Under normal conditions the fungus is not causing

This is the result of a proper equilibrium between host defense mechanisms and fungal biological properties



throughout the body

To infect host tissue, the unicellular form of candida is switching to a more invasive multicellular form Candida can escape from our immune response: Phagocytized candida can pierce through immune cells and escape gaining access to all organ tissue

form

Adhesin allows adhesion

Adhesin & Invasin are both also involved in Biofilm formation

Felk, Angelika, et al. "Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs." Infection and immunity 70.7 (2002): 3689–3700.

Gabrielli, Elena, et al. "In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of Candida albicans." Virulence 7.7 (2016): 819-825.

10.2 (2012): 112-122.

Netea, Mihai G., et al. "Immune defence against Candida fungal infections." Nature Reviews Immunology 15.10 (2015): 630–642.

Netea, Mihai G., et al. "Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors." The Journal of clinical investigation 116.6 (2006): 1642–1650.

9.4 (2013): e1003315.

gens 4.12 (2008): e1000227.

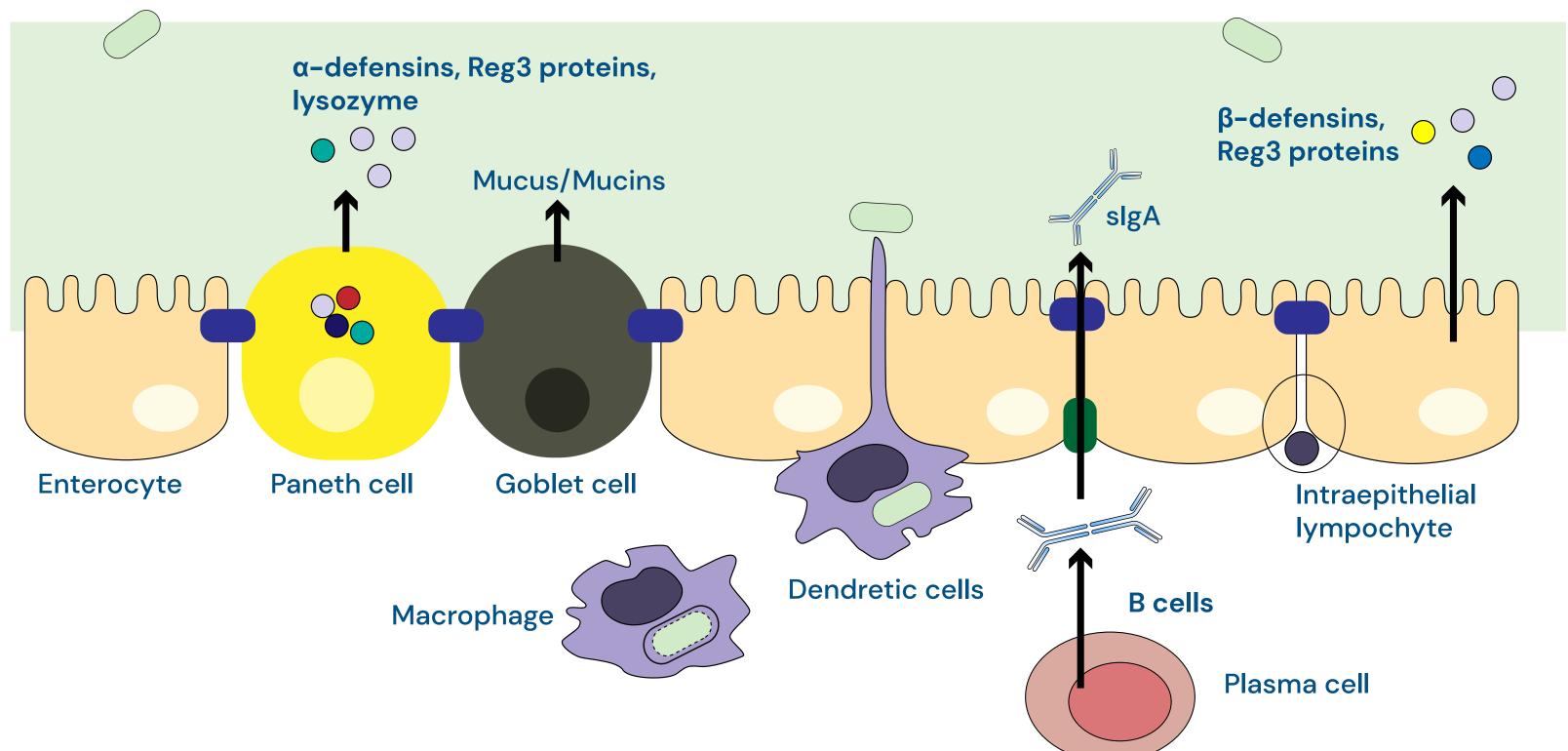
Candida is using specialized proteins during the switch to virulent

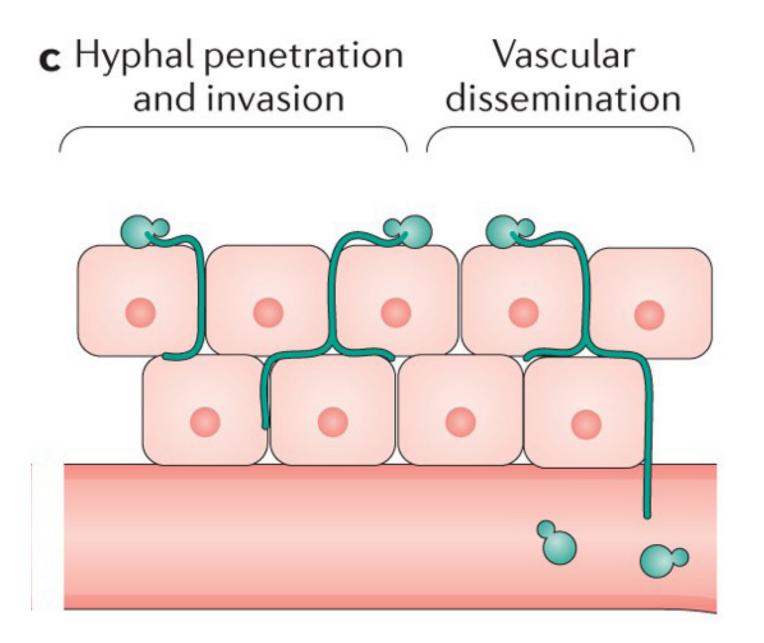
- Invasin protein allows penetration

2 different ways have been described : Active penetration – with hyphae and simultaneous release of degrading enzymes Induced endocytosis

Gow, Neil AR, et al. "Candida albicans morphogenesis and host defence: discriminating invasion from colonization." Nature reviews microbiology

Marakalala, Mohlopheni J., et al. "Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1." PLoS pathogens


Wheeler, Robert T., et al. "Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment." PLoS patho-



The Candida-induced epithelial damage is less severe in the intestinal lining than in oral cells. The intestinal surface is better protected:

- A layer of mucus
- The secretion of s lgA's
- The production of anti-microbial molecules, such as defensins

Specific circumstances in which Candida alb. Transitions to a virulent form?

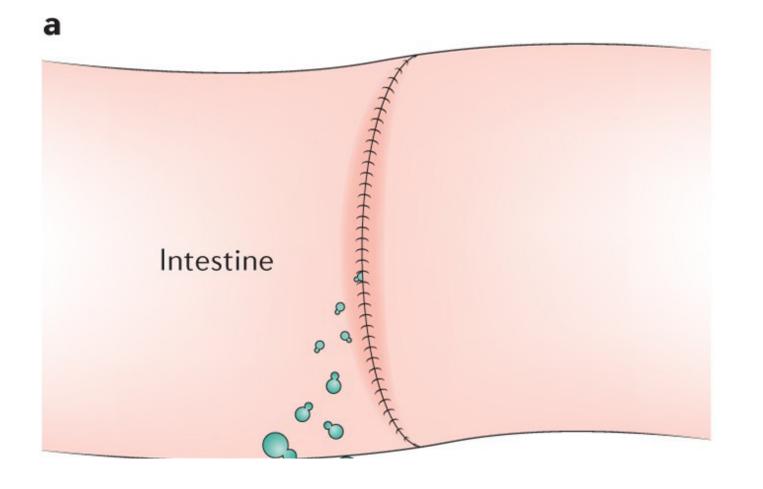
protective factors = Candida spp.

Kullberg, B. J. & Arendrup, M. C. Invasive candidiasis. N. Engl. J. Med. 373, 1445–1456 (2015).

Gow, N. A., van de Veerdonk, F. L., Brown, A. J. & Netea, M. G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10 112–122 (2011).

Netea, M. G., Joosten, L. A., van der Meer, J. W., Kullberg, B. J. & van de Veerdonk, F. L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015).

Fan, D. et al. Activation of HIF-1alpha and IL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015).


1. perturbation of mucosal microbiota caused by long-term use or repeated use of broad spectrum antibiotics Commensal gut microbiota species induce the release of anti-Candida spp. protective factors from the mucosa

Antibiotics alter our microbiome and the release of

Colonize, Penetrate, Invade

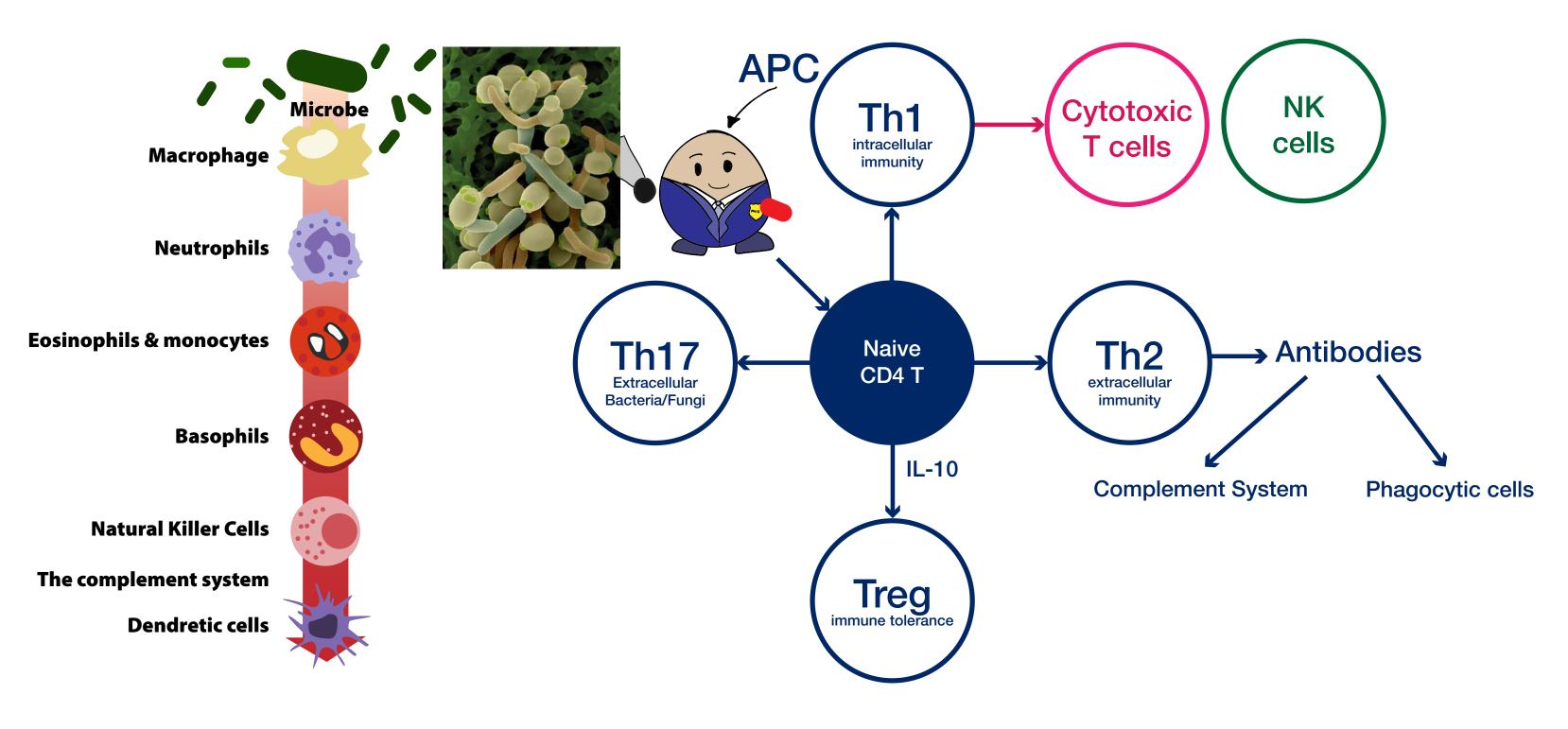
2. Breach of the gastro-intestinal or cutaneous barriers

Mucositis induced by chemotherapy (mucosa of the GI tube are inflamed by cytotoxic chemotherapy) Gastro-intestinal surgery or perforation Central -venous catheters

Variations Shifts in PF

Variations in the local environment

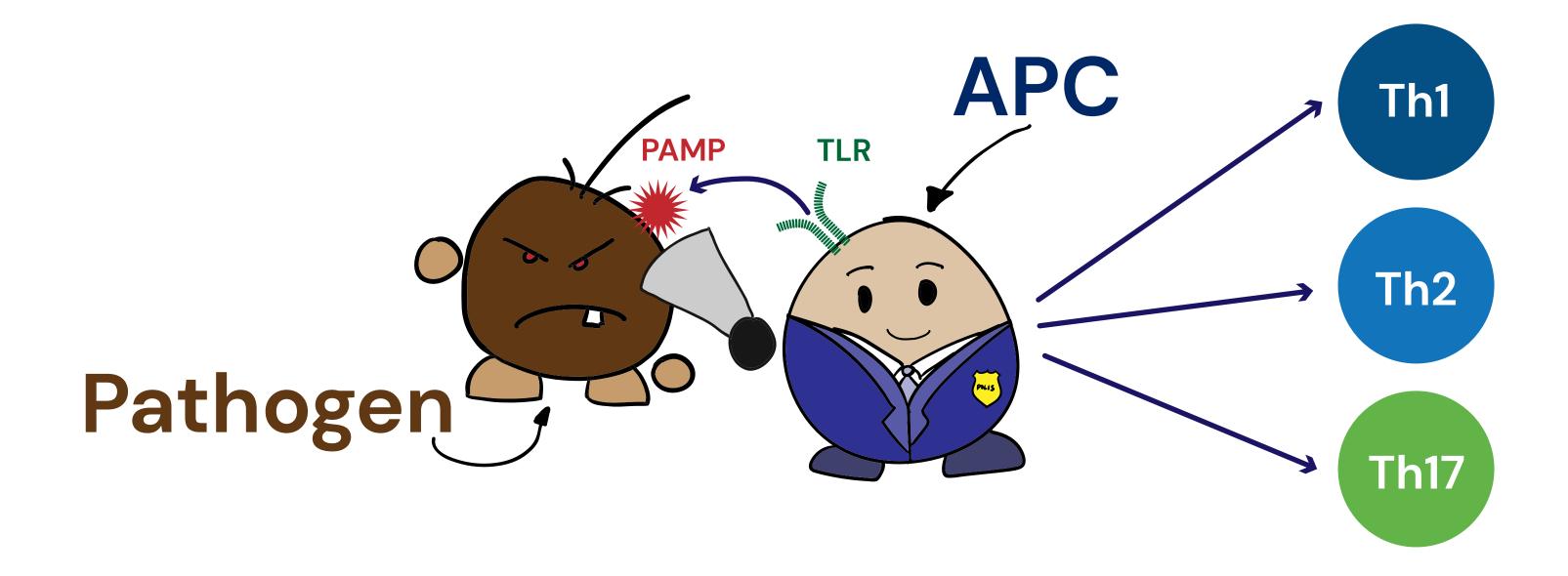
Shifts in PH or nutritional content



3. Immunosuppression or poor immune response Aging, cancer development, autoimmune disorders, stress Neutropenia, induced by chemotherapy Corticosteroid therapy's impact on our innate immune defense

Understanding of fungal immunity

Innate immunity

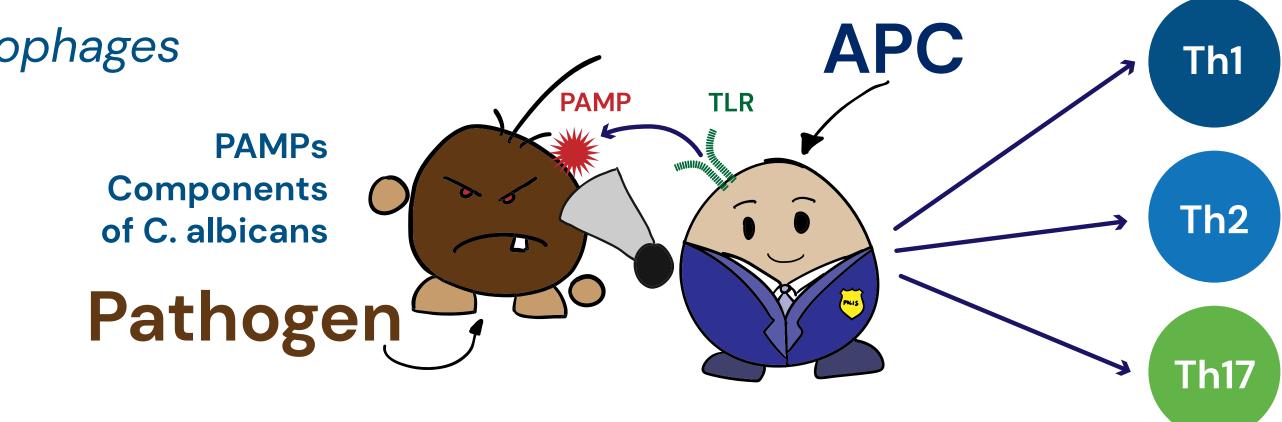


The innate immune system recognizes fungal pathogens We develop a subsequent pathogen-specific adaptive immune response

Adaptive immunity

Recognition elements for fungi = pattern recognition receptors

Recognition elements for fungi = pattern recognition receptors


Candida has a number of PAMPS

When PRR react on PAMPS, Candida starts to fight – producing proteins like adhesin & invasion

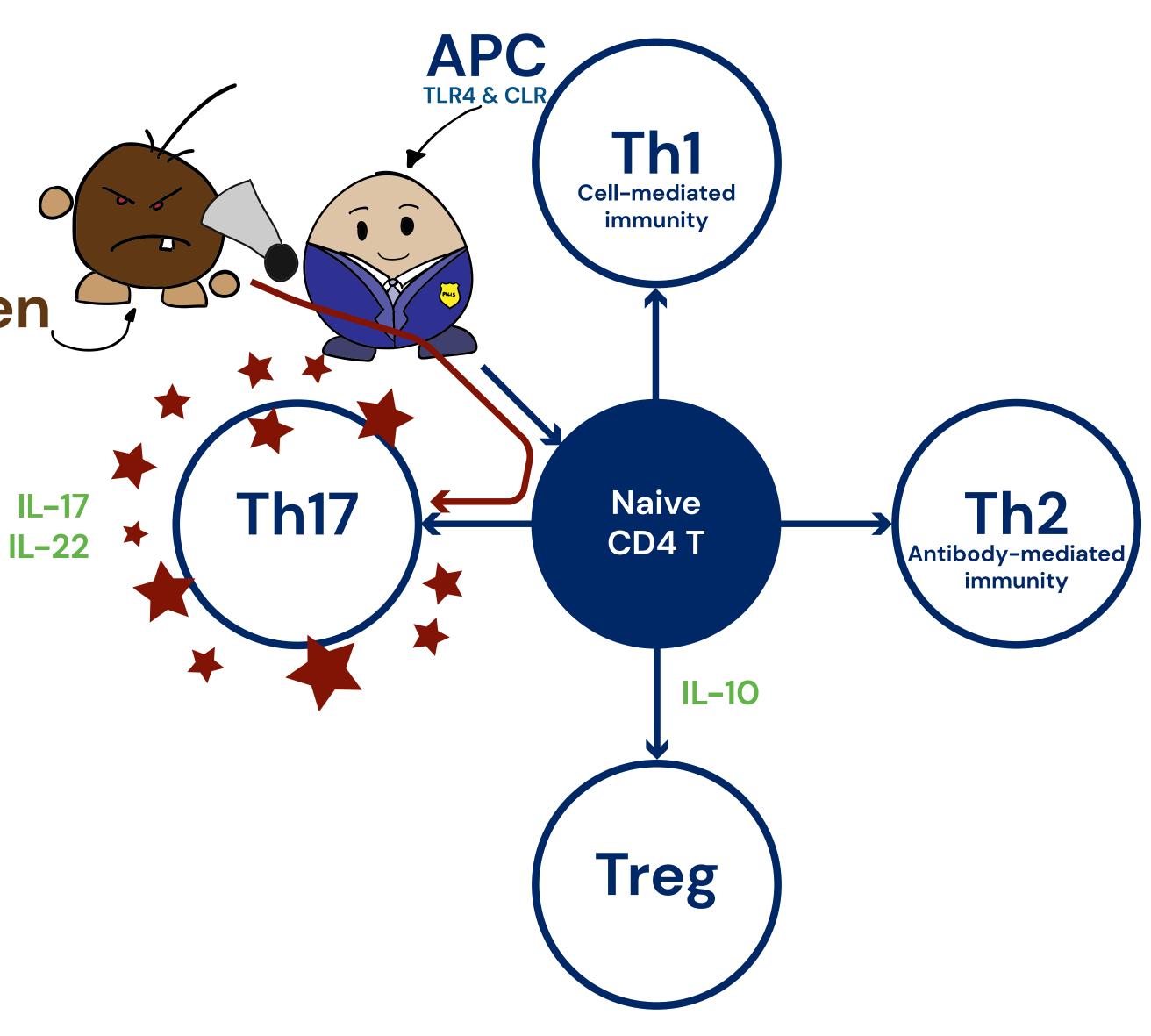
After detection by PRR, different mediators like NFKB are released = signaling mechanism – they ask for more immune cells to fight Candida = we set up an inflammation

The inflammation can become chronic if your macrophages are dysfunctional or if you can't convert monocytes into macrophages + more neutrophils are recruited of C. = chronic inflammation

It's problematic when this gets in a chronic loop

PRR = Toll-like receptors (TLR) C-type lectin receptors (CLR)

Cytokines promote the differentiation of CD4+ into the Th17 lineage


Pathogen

Gow, N. A., van de Veerdonk, F. L., Brown, A. J. & Netea, M. G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10 112–122 (2011).

Netea, Mihai G., et al. "Role of TLR1 and TLR6 in the host defense against disseminated candidiasis." FEMS Immunology & Medical Microbiology 52.1 (2008): 118–123.

Romani, Luigina. "Immunity to fungal infections." Nature Reviews Immunology 11.4 (2011): 275–288.

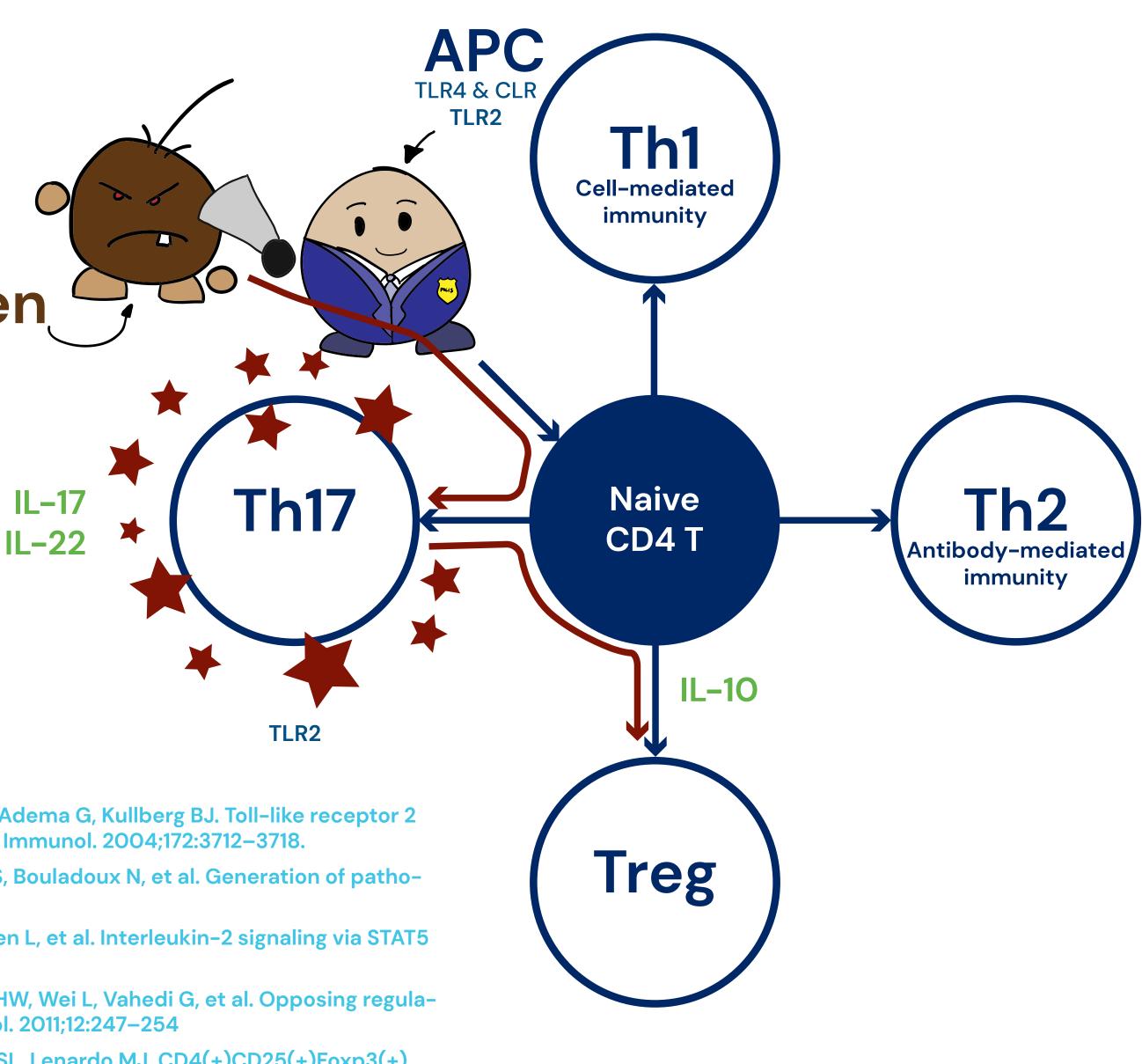
Conti, Heather R., and Sarah L. Gaffen. "Host responses to Candida albicans: Th17 cells and mucosal candidiasis." Microbes and Infection 12.7 (2010): 518–527.

TLR2 has been shown to suppress inflammatory responses to Candida via production of IL-10 and enhanced T reg activity

Pathogen

Thus in addition to Th17 cells, we develop a T reg response we see an interplay between Th17 & T regs

Both required for effective host response to Candida without excessive inflammation or autoimmune response


Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. 2004;172:3712–3718.

Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature. 2010;467:967–971

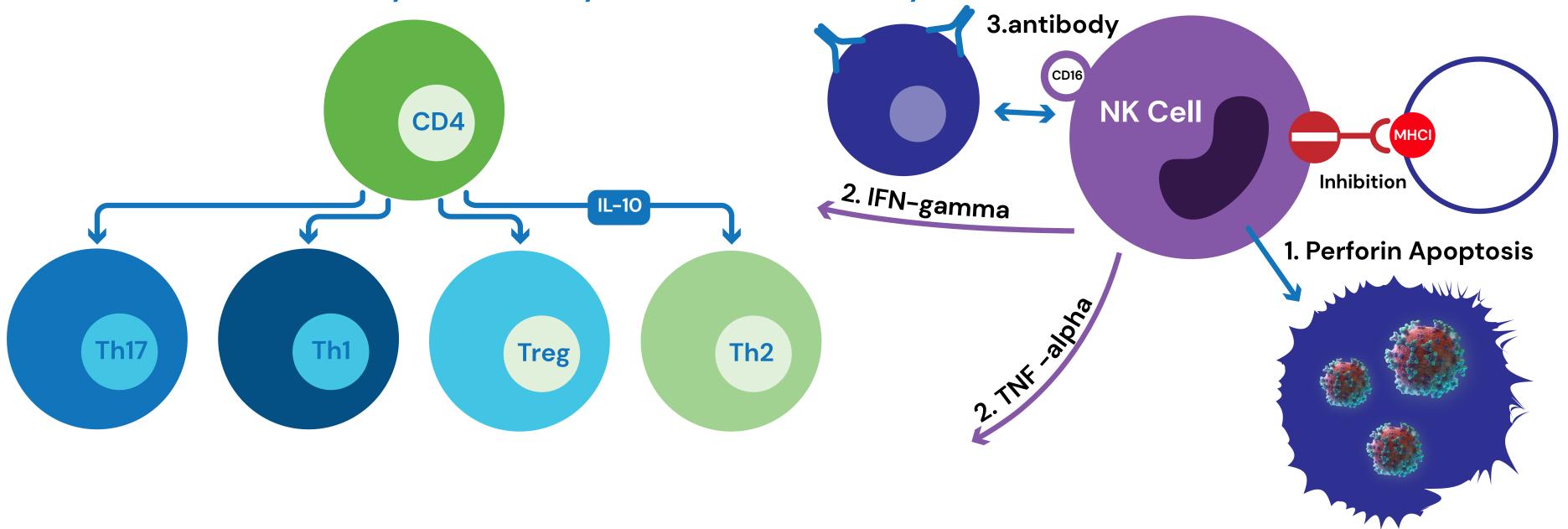
Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371–381

Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, Hirahara K, Sun HW, Wei L, Vahedi G, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol. 2011;12:247–254

Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity. 2011;34:422-434

Life before Th17?

Th17 + T regs + Cell mediated immunity (Th1-NK cells)?


HIV+ individuals were clearly more susceptible to many opportunistic fungal pathogens, including oral trush caused by C. Albicans

1. The importance of the Cell mediated immunity during the interplay Th17–T regs was dramatically illustrated during the AIDS pandemic

Activation

- Degradation of the membranes of cells that have been infected by intracellular germs = lysis, using enzymes mainly perforin
- 2. Indirect elimination of target cells through production of inflammatory cytokines such as IFN-gamma & TNF-alpha
- 3. NK Cells express CD16 on their surface CD16 detects antibody-coated target cells which leads to cytotoxicity of the antibody-coated cells

"A convincing plea to consider an untapped resource in the fight against disease." - Kinus Discoveries

A Guide to

Transfer Factors Immune System Health

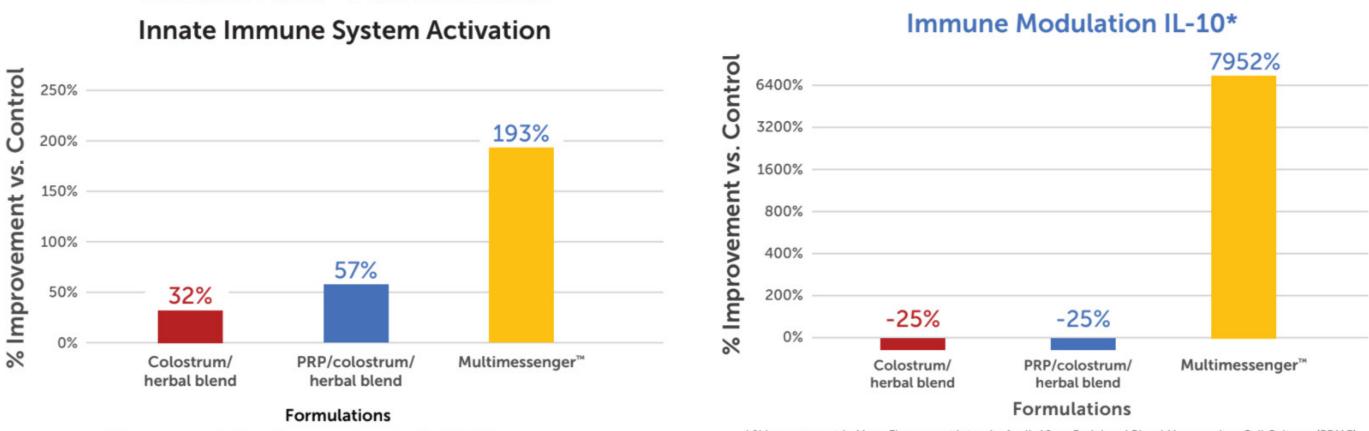
2nd Edition

Helping the body heal itself by strengthening cell-mediated immunity

"From viral and fungal infections to malignant disorders, from herpes to tuberculosis, transfer factor has proven able to stimulate immune defenses, preventing new infections or relapses and shortening the course of disease."

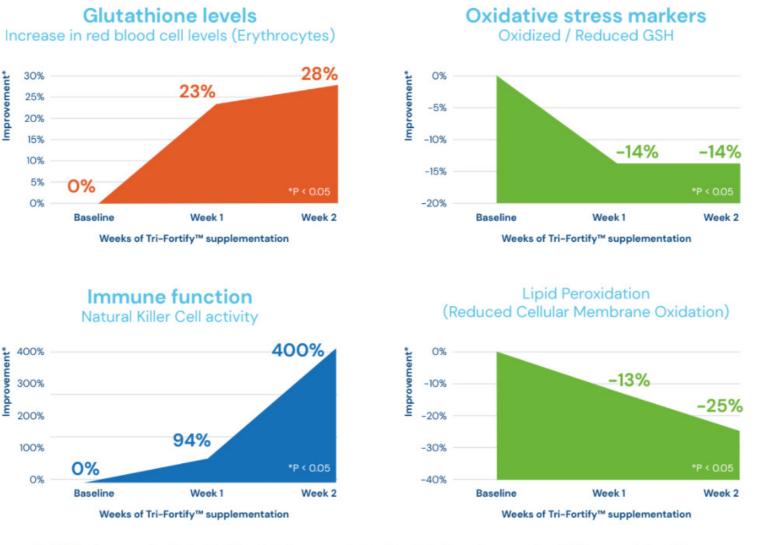
- Dimitri Viza, MD The Scientist, 1999, 13(11):12

Aaron White, PhD


The activation of Natural Killer Cells through Transfer Factors is based on a direct interaction between Transfer Factors & activating receptors on the surface of NK cells

Conclusion and clinical features Transfer Factors (Multimessenger [®]) bind on activating receptors on the surface of natural killer cells & empower our defense and recovery systems.

Multimessenger 1 x 3 caps just before breakfast in prevention Multimessenger 2 x 3 caps just before meals during infection


Natural Killer Cell Activation*

*% improvement in Mean Fluorescent Intensity for CD 69 Receptor on Natural Killer Cells. (CD69 is highly correlated with NK cell activity)

" Mingrovement in Mean Fluorescent Intensity for IL-10 on Peripheral Blood Mononuclear Cell Cultures (PBMC)

Published research : Sinha, R., Sinha, I., Calcagnotto, A., Trushin, N. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018 Jan;72(1):105-111.

30%

25%

20% 15%

10%

5% 0%

400%

300%

100%

0%

0

Baseline

È 200%

Baseline

Liposomal Glutathione (TriFortify[®])

efficiently elevates intracellular levels of GSH and increases natural killer cell activity by reducing the adverse effects of oxidative stress on Natural Killer Cells

Trifortify 1 teaspoon separated from food in prevention Trifortify 1 teaspoon several times per day during infection

How important are NK cells in the general picture?

- 1. susceptibility to C.albicans
- have defective T/B Lymphocyte immunity

Quintin, Jessica, et al. "Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice." European journal of immunology 44.8 (2014): 2405-2414.

NK cell depletion in immunocompetent mice did not increase

2. NK cells depletion are essential if mice are immune suppressed,

Th17 / Tregs + Th1/NK cells

Directives for performant immune modulation in fungal protection

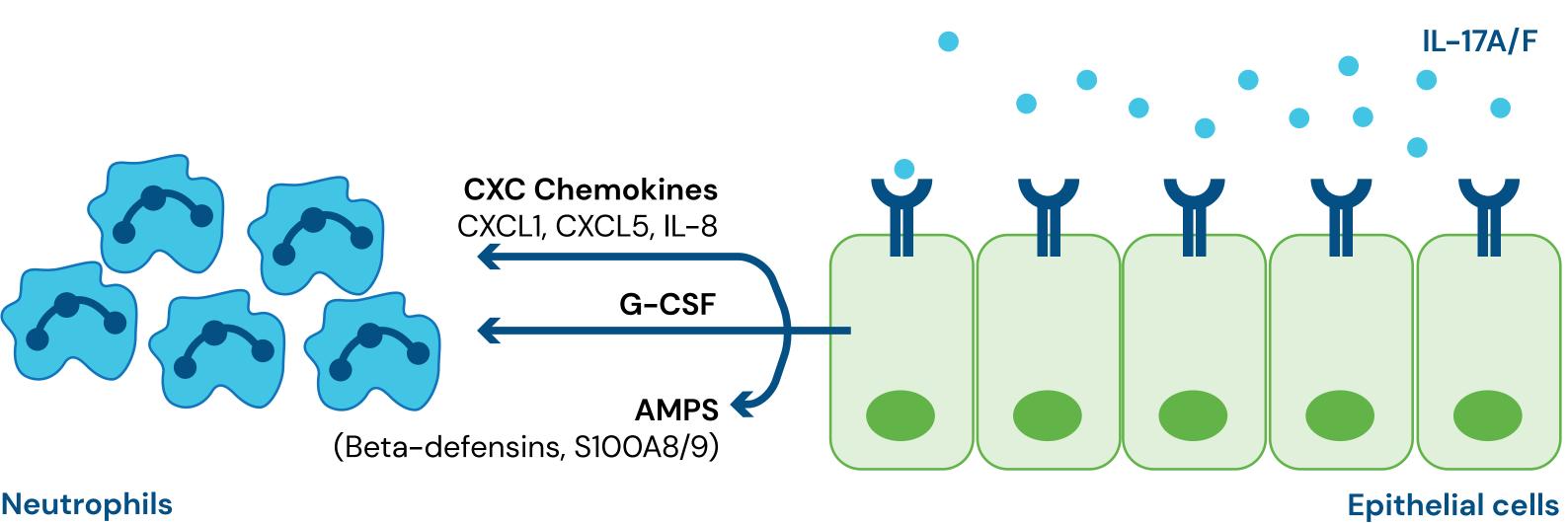
Proof of concept:

New researched drugs in treatment of autoimmune diseases, like rheumatoid arthritis and psoriasis, are antibodies targeting IL-17 expression.

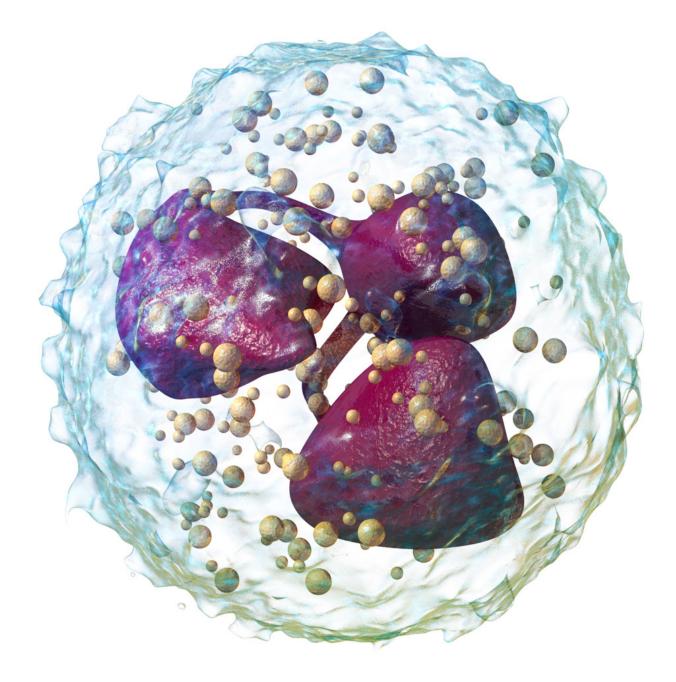
As a side effect we see inevitably higher risk for C. albicans infections

Lin, Lin, et al. "Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice." PLoS pathogens 5.12 (2009): e1000703

Strangfeld, Anja, and Joachim Listing. "Bacterial and opportunistic infections during anti-TNF therapy." Best Practice & Research Clinical Rheumatology 20.6 (2006): 1181–1195.


Farah, C. S., et al. "Distinct roles for interleukin[]12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene[]targeting." Oral microbiology and immunology 21.4 (2006): 252–255.

Directives for development of vaccines against C .albicans


Helping hands?

IL-17A & IL-17F, produced by TH17 cell , act on epithelial cells to induce the expression of neutrophil attracting chemokines

Neutrophils

Neutrophils are professional killers and instructors of the immune system

- circulation

Neutrophils are the most abundant white blood cells in

 Neutrophils are among the first responders to migrate toward the site of inflammation, chemotaxis

Neutrophils use different methods to eliminate germs?

- 1. Phagocytosis
- 2. Degranulation

Neutrophils also release granules with antimicrobial properties: defensins, lysozyme, alkaline phosphatase, lactoferrin, collagenase, elastase and cathepsin, MPO (myeloperoxidase or NADPH oxidase)

3. neutrophil extracellular traps (NETs) A web of fibers is released to trap and kill microbes

Lanza, Francesco. "Clinical manifestation of myeloperoxidase deficiency." Journal of molecular medicine 76.10 (1998): 676–681.

Low neutrophil counts are termed Neutropenia

- Vit B12 deficiency
- Hyperglycemia

= Circumstances where we regularyly see fungal overgrowth...

Amulic, Borko, et al. "Neutrophil function: from mechanisms to disease." Annual review of immunology 30 (2012): 459–489.

Side effect of medication, most prominently chemotherapy

Eosinophils in fungal disease ?

associated with disease severity.

Besides their roles as major pathogens, fungi represent a source of major allergens

Brown, Gordon D. "Dectin-1: a signalling non-TLR pattern-recognition receptor." Nature Reviews Immunology 6.1 (2006): 33-43.

Hardison, Sarah E., and Gordon D. Brown. "C-type lectin receptors orchestrate antifungal immunity." Nature immunology 13.9 (2012): 817–822.

- Eosinophils, along with basophils and mast cells, are important mediators of allergic responses and asthma pathogenesis and are
- They also fight helminth (worm) colonization and may be slightly elevated in the presence of certain parasites
- Eosinophils are granulocytes, residing in tissue
- The immunological mechanisms underlying direct effector interactions between fungi and eosinophils are still not fully known but we know that Dectin-1 receptors, recognizing fungal Beta-glucans, are expressed in human eosinophils

Candida overgrowth & autoimmunity:

IL-17 will try to destroy the invading Candida But IL-17 is a downregulator of T reg cells = The link between Th17 & autoimmunity

Vojdani, A., et al. "Immunological cross reactivity between Candida albicans and human tissue." Journal of clinical & laboratory immunology 48.1 (1996): 1–15.

Next to

This demonstration of immunological cross reactivity between Candida and human tissues show **a possible role between Candida Albicans and the development of autoimmune diseases**

Comorbidity or contributing factor?

Poor immunity comorbidities like autoimmunity

Candida albicans overgrowth

Gürsoy, Semra, et al. "Autoimmunity and intestinal colonization by Candida albicans in patients with type 1 diabetes at the time of the diagnosis." Korean journal of pediatrics 61.7 (2018): 217.

Type 1 show high prevalence of Candida albicans

Candida albicans overgrowth Autoimmunity

Examination and culture of fresh stool samples in patients with Diabetes

Concerns?

 We need rapid molecular diagnostics (to intervene rapidly and possibly reduce mortality)

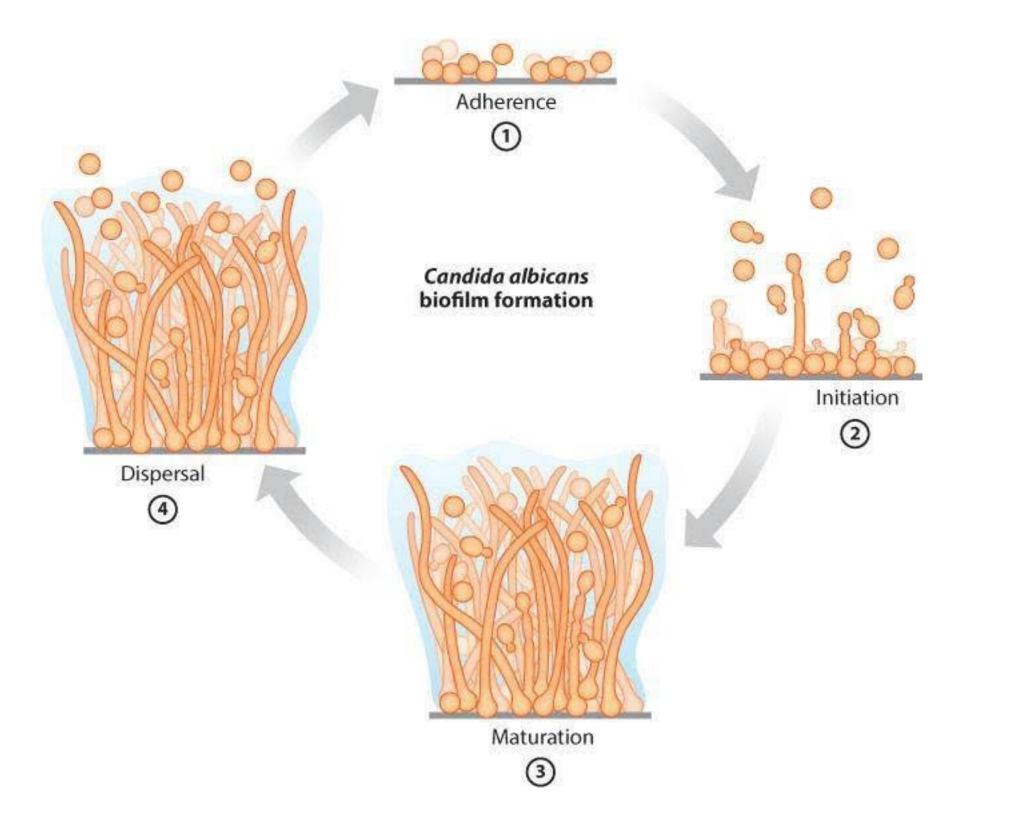
Many clinicians still rely on physical examination or routine fungal cultures – low sensitivity or on empirical evidence (e.g.: sepsis in previously operated patient)

• multidrug resistance in some species, C. glabrata & C. auris (C. auris emerged as a major pathogen in some parts of the world)

Resistance to first-line antifungals like fluconazole or echinocandins in C. albicans are being recognized increasingly (often results of high usage in hospitals)

Anderson, James B. "Evolution of antifungal-drug resistance: mechanisms and pathogen fitness." Nature Reviews Microbiology 3.7 (2005): 547-556. Bonhomme, Julie, and Christophe d'Enfert. "Candida albicans biofilms: building a heterogeneous, drug-tolerant environment." Current opinion in microbiology 16.4 (2013): 398-403.

Jabra-Rizk, Mary Ann, William A. Falkler, and Timothy F. Meiller. "Fungal biofilms and drug resistance." Emerging infectious diseases 10.1 (2004): 14.


Biofilm formation

biofilm, a closely packed community of cells.

- Biofilms form on implanted medical devices including catheters, pacemakers, dentures
- Biofilms form on mucosal surfaces before they further invade

the medical impact of C. albicans depends on its ability to thrive as a

The 4 stages of biofilm formation in C. albicans

- 1. Adherence to a surface (and to each other)
- 2. Proliferation
- 3. Growth of hyphae The entire biofilm is encased in an extracellular matrix
- 4. Dispersal of yeast-form cells to form new sites (they are spread in the original round yeast form)

Multispecies Biofilms with C. albicans

We have learned from studies that C. albicans and bacteria / other pathogen can interact with each other by secretion of signaling **molecules** that influence the behavior of one species toward the other.

C. albicans interacts with several bacteria found in the gut, like Enterococcus and Escherichia species

C. albicans forms dual-species biofilms with Streptococcus mutans, commonly isolated from denture stomatitis, periodontitis or dental caries

Bamford, Caroline V., et al. "Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication." Infection and immunity 77.9 (2009): 3696-3704.

Jack, Alison A., et al. "Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans." Microbiology 161.Pt 2 (2015): 411. Jarosz, Lucja M., et al. "Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation." Eukaryotic cell 8.11 (2009): 1658–1664. Adam, Berit, George S. Baillie, and L. Julia Douglas. "Mixed species biofilms of Candida albicans and Staphylococcus epidermidis." Journal of medical microbiology

51.4 (2002): 344-349.

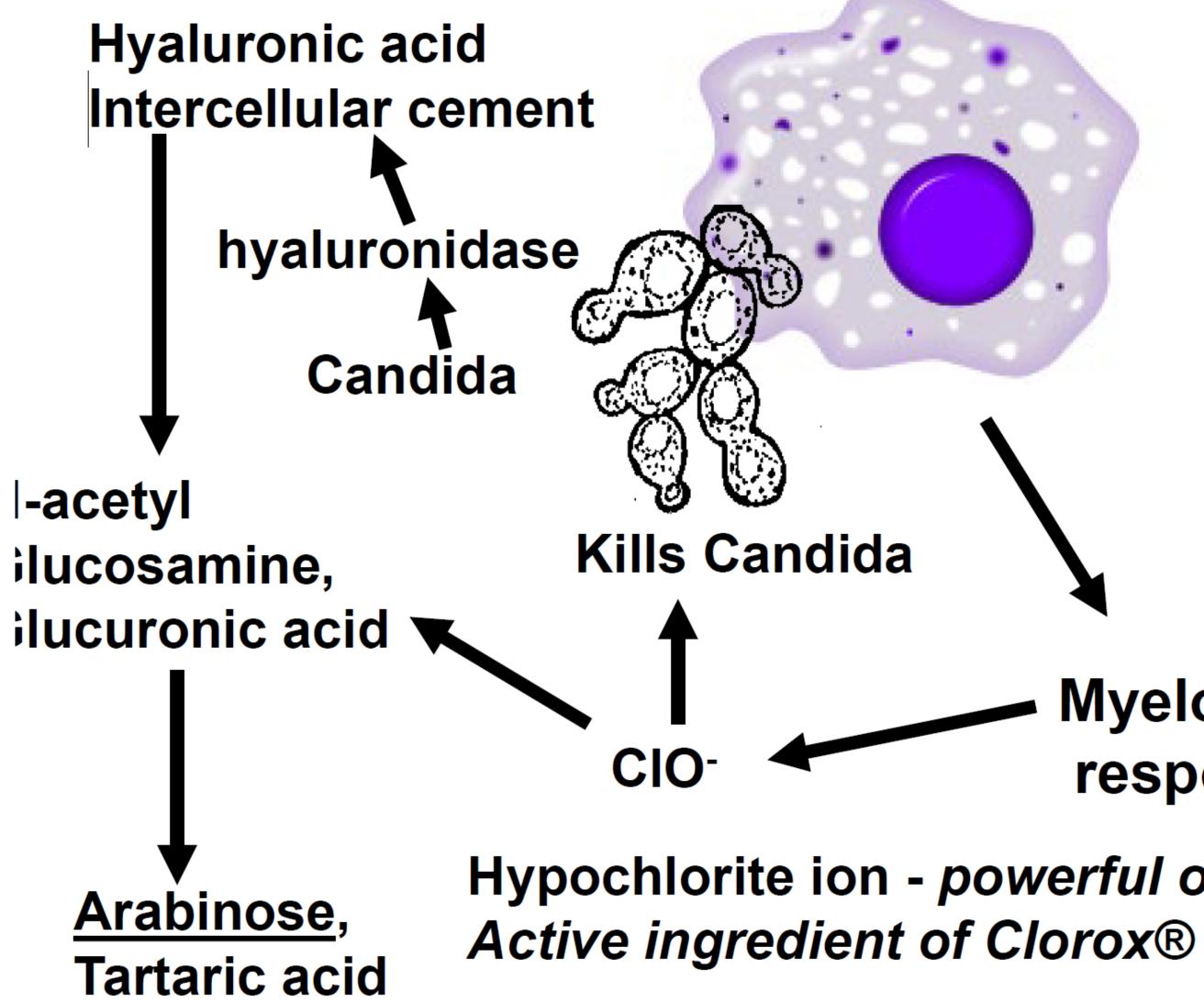
Nobile, Clarissa J., and Alexander D. Johnson. "Candida albicans biofilms and human disease." Annual review of microbiology 69 (2015): 71–92.

William Shaw, Ph.D., Direct equilation #: altent Name:	101344		reet, Lenexa, H	(\$ 66214 (913) 341 Physician: Date of Collection:	-8949 Fax (913) 341-6207 TRACY TRANCHITELLA 07/15/2019
etlent Age:				Time of Collection:	05:30 AM
ellent Sex: F		2.65		Print Date:	07/24/2019
*	Organic Acid	ds Test	- Nutri	itional and Meta	bolic Profile
etabolic Markers in Urine	Reference Range (mmoltnol creatinine)		Patient Value	Reference Population - Females Age 13 and	
Intestinal Microbial Overgr	owth				
ast and Fungal Markers					
1 Citramalic		\$ 3.6	0.50		
2 5-Hydroxymethyl-2-furoic aperg/l/ks)		≤ 14	0.98	-	
3-Oxoglutaric		\$ 0.33	0.09		
Furan-2,5-dicarboxylic		\$ 16	2.9		
apargillika) 5 Furancarbon yigiycine		\$ 1.9	0.08		
ap-argillars)					
i Tartaric aparg/likes)		\$ 4.5	0.37		
7 Arabino se		\$ 29	H 36		8.
Carbo xycitric		\$ 29	2.4		
9 Tricarb allylic		\$ 0.44	0.40	-	
usarium) acterial Markers					
8 Hippuric		≤ 613	133		
1 2-Hydroxyph en ylacetic	0.06	- 0.66	0.32		
2 4-Hydroxybanzoic		\$ 1.3	0.46		
3 4-Hydro xyhipp uric	0.79	- 17	2.6		
4 DHPPA (Beneficial Bacteria)		\$ 0.38	0.03	-	
		0.000		0	
stridia Bacterial Markers 4-Hydroxyph en ylacetic		\$ 19	5.2		
diffella, C. štřeklařdi, C. litus abuve i HPHPA		± 208	8.2		
spovoganas, C. caloritolarana, C. ba	tubnom & others)				
7 4-Cresol . dilliolej		≤ 75	23		
8 3-Indoleacetic J. stricklandij C. štoseborense, C. avi		\$ 11	0.85		

. .

Moder	
Funga	

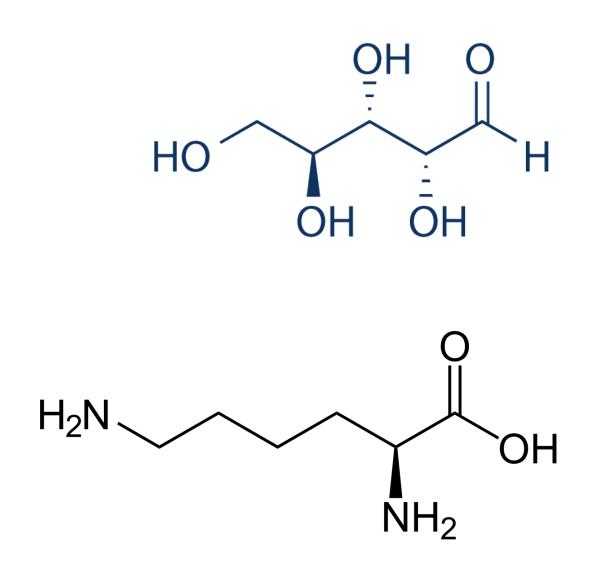
Testing performed by The Great Plains Laboratory, Inc., Lanexa, Kansas. The Great Plains Laboratory has developed and determined the performance characteristics of this test. This test has not been evaluated by the U.S. FDA; the FDA does not currently regulate such testing.


rn diagnostical methods detect Toxins

1. Arabinose

is an indicator of invasive Candida reflective of systemic infection

2. OAT Organic Acid Test



Myeloperoxidase-WBC enzyme response to Candida infection

Hypochlorite ion - powerful oxidizing agent-tissue damage Active ingredient of Clorox®

acid Lysine

Lysine group to lysine:

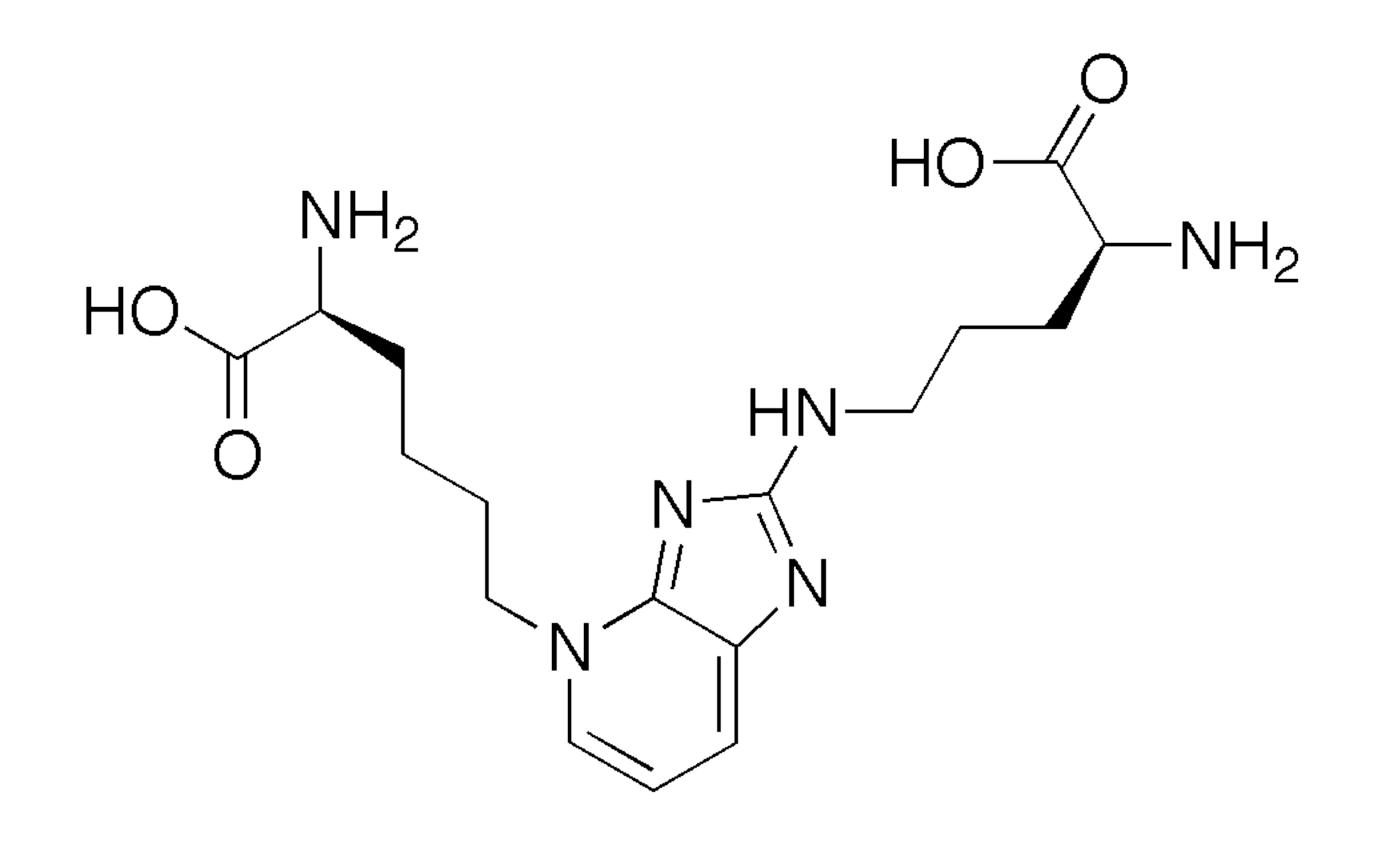
- Biotin
- Vit B6
- **R- Alpha-Lipoic Acid**

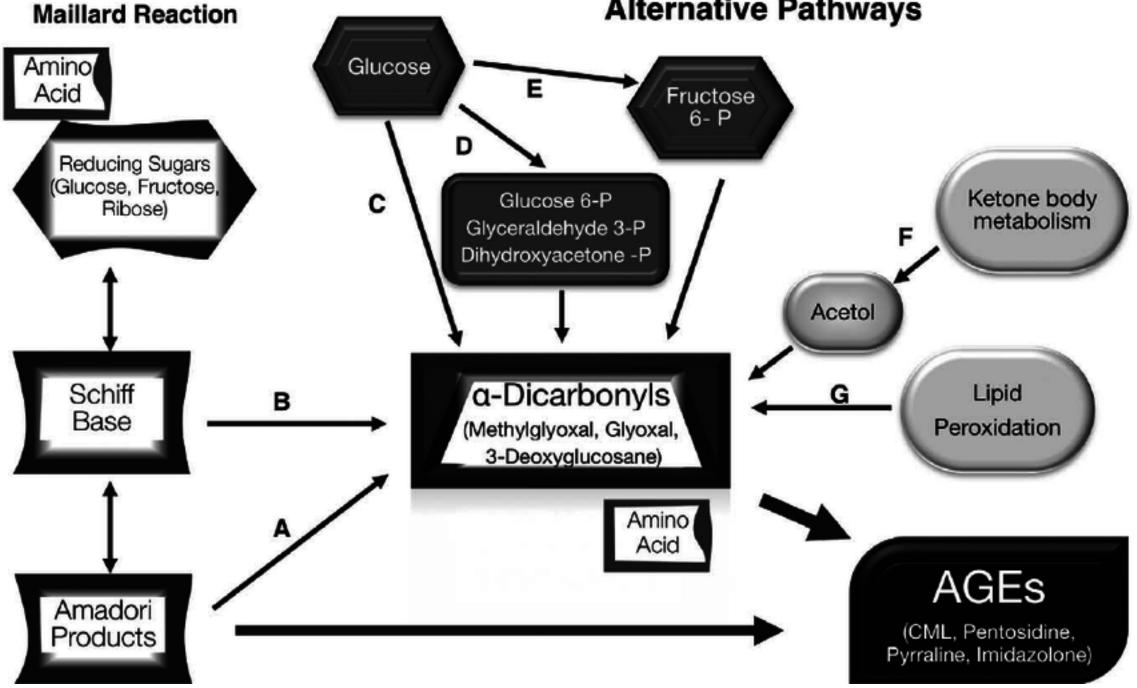
We need specific nutrients to break down aldehydes: **Glutathione (bio-available)**

Jurnak, Frances. "The pivotal role of aldehyde toxicity in autism spectrum disorder: the therapeutic potential of micronutrient supplementation." Nutrition and metabolic insights 8.Suppl 1 (2015): 57.

Arabinose is a very toxic metabolite

The aldehyde is a very reactive group, can bind with the amino


Some Nutrients help blocking the binding of the aldehyde


Pentosidine

Arabinose can complex with the amino acid Lysine which then interacts with the amino acid Arginine to form the toxic byproduct called Pentosidine

Arabinose-Lysine complex + Arginine = Pentosidine

(E) polyol pathway, (F) ketone body and threonine metabolism, (G) lipid peroxidation

Pentosidine falls under the category of Advanced Glycation End Products (AGE's)

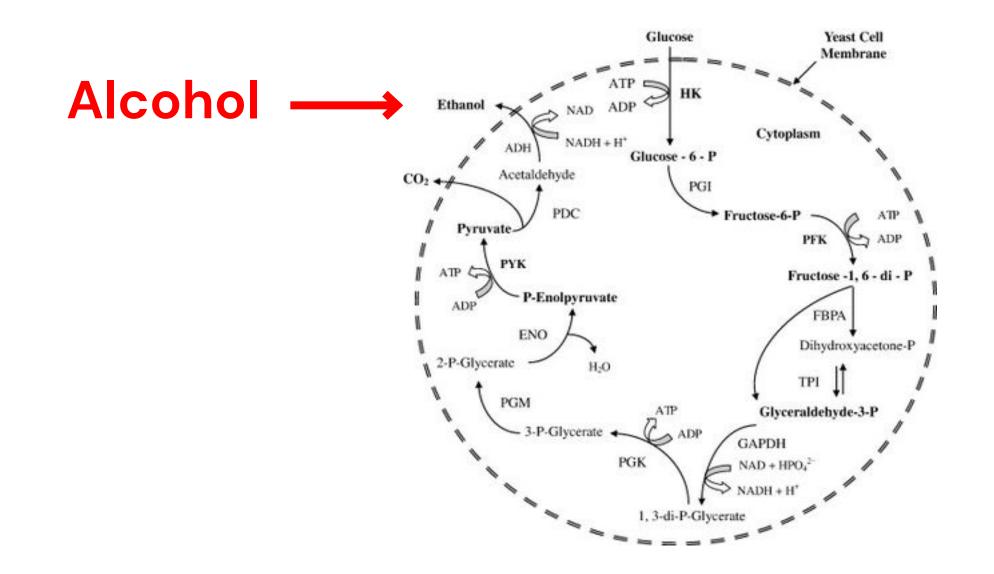
AGE's are proteins, amino acids & lipids that become altered when exposed to sugars

source: Kurt Woeller, DO Great Plains, The Link between Invasive Candida & Various health issues

Alternative Pathways

Different pathways for advanced glycation end products formation in vivo: (A) nonoxidative Amadori product cleavage, (B) Namiki pathway, (C) Wolff pathway, glucose autoxidation, (D) glycolytic pathway,

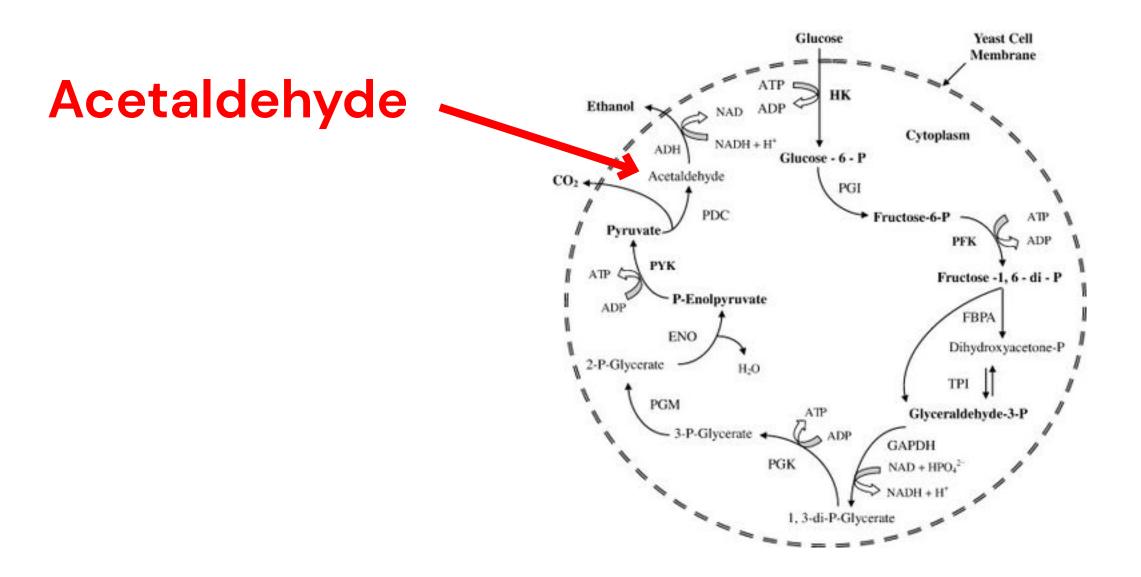
Pentosidine


- Decreases enzyme activity
- Decreases flexibility of proteins in collagen and muscle tissue
- Damages myelin
- •

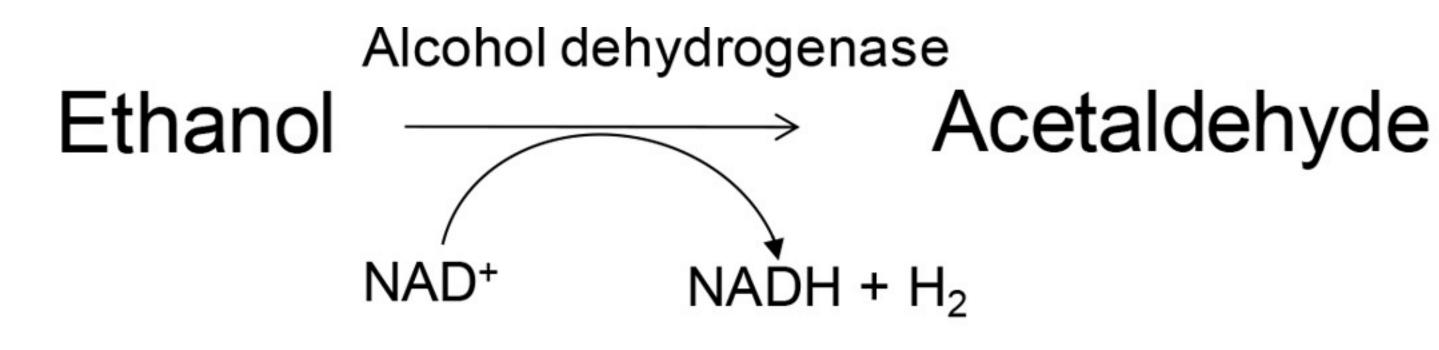
Induces kidney problems & cardiovascular issues

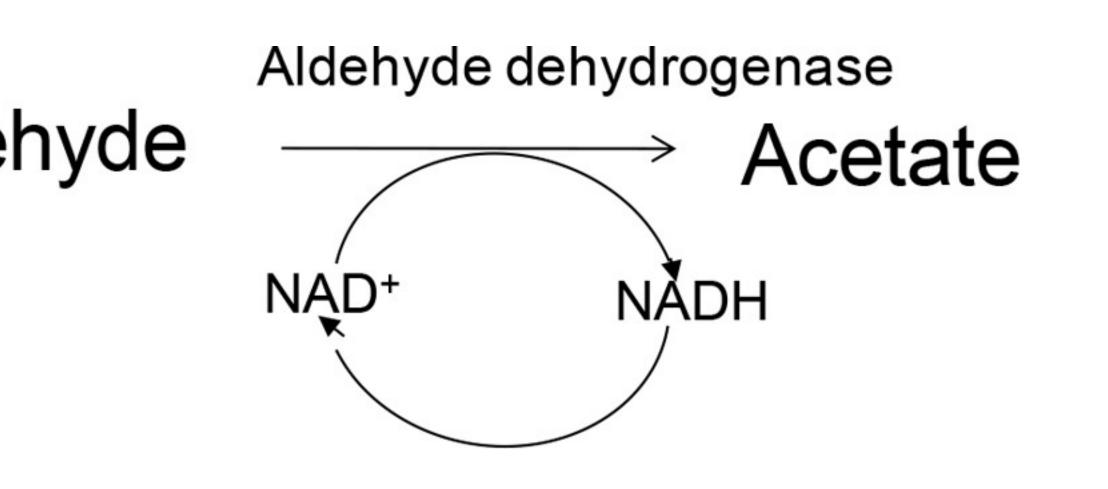
Fungal Toxicity

Candida converts glucose in alcohol, via acetaldehyde Yeast can ferment carbohydrates into acetaldehyde & alcohol


Drunk without consuming alcohol?

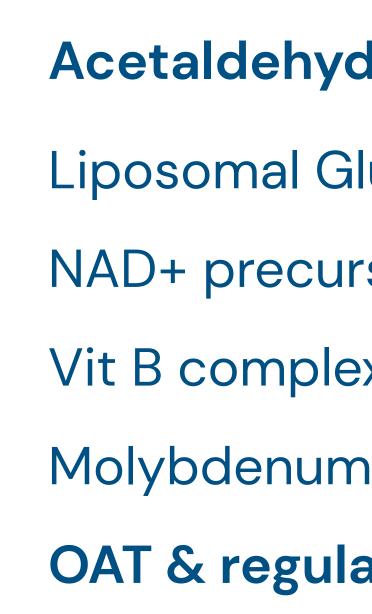
The Auto-Brewery Syndrome

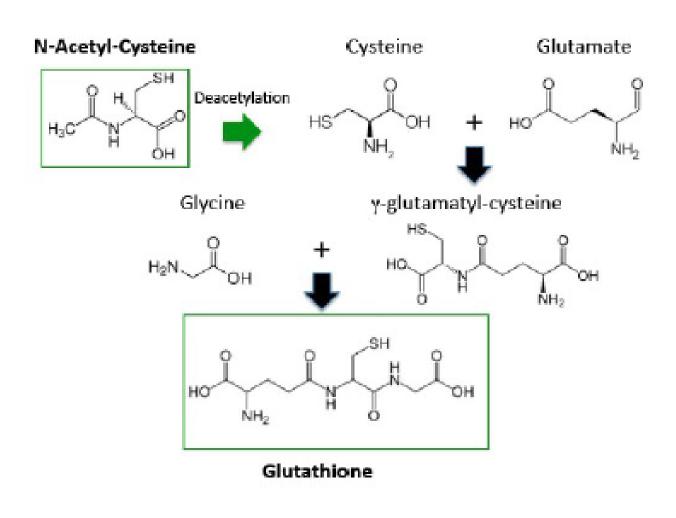

But Acetaldehyde can also be produced,


Plants, yeast and bacteria can ferment glucose into Acetaldehyde

We see the same symptoms of acetaldehyde toxicity in alcohol overconsumption

Accumulation of acetaldehyde manifests as


- Facial flushing
- Nausea
- Rapid heart beat


Symptoms we see in hangover, overconsumption of alcohol – but possibly also in Candida overgrowth

Acetaldehyde depletes Glutathione

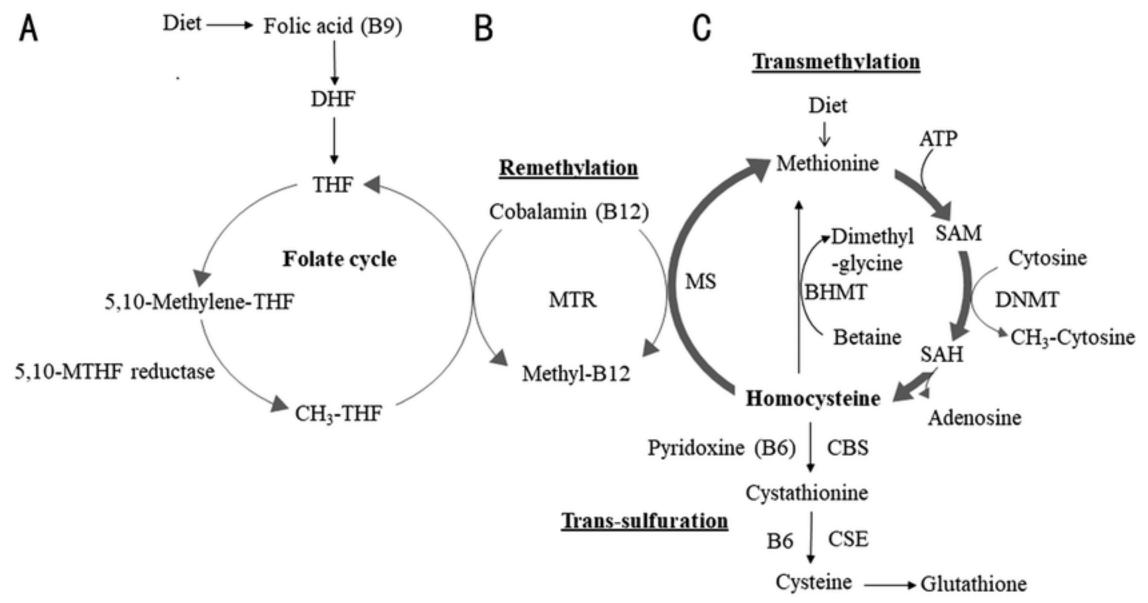
the binding to Glycine

Acetaldehyde binds gamma –Glutamyl Cysteine and prevents = it blocks the formation of Glutathione

Acetaldehyde detoxification:

- Liposomal Glutathione (Trifortify 1 teaspoon/day)
- NAD+ precursors (CogniFuel NAD+/PQQ 3x1/day)
- Vit B complex in active form (Cofactor B Complex 1/day)
- Molybdenum (Physician's Daily 1/day)

OAT & regular Labs show B2 deficiencies



Anni H, Pristatsky P, Israel Y. Binding of acetaldehyde to a glutathione metabo-lite: mass spectrometric characterization of an acetaldehyde-cysteinylglycine conjugate. Alcohol Clin Exp Res. 2003;10:1613-1621.

Accumulation of Acetaldehyde inhibits MS (Methionine Synthetase) in the Methylation pathway

Kenyon, Susan H., Anna Nicolaou, and William A. Gibbons. "The effect of ethanol and its metabolites upon methionine synthase activity in vitro." Alcohol 15.4 (1998): 305-309.

More OAT markers in Candida overgrowth

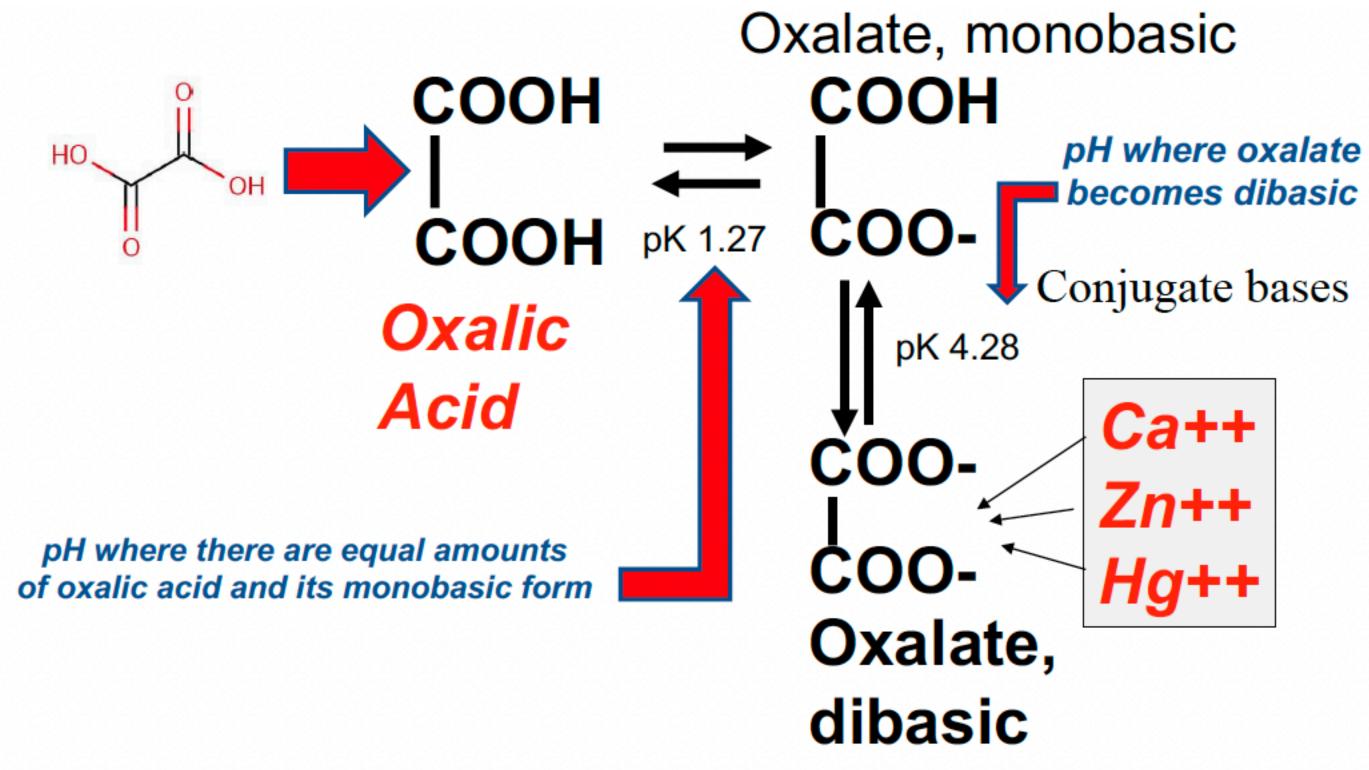
source: Kurt Woeller, DO Great Plains, The Link between Invasive Candida & Various health issues

- Oxolate metabolites (oxalic)
- **Oxalic elevated in Candida infections, Aspergillus, Clostridium overgrowth or dietary origin**
- Candida disrupts microbiome and causes advantage

Metabolite produced by Candida Oxalic acid often referred as oxalates (the conjugate)

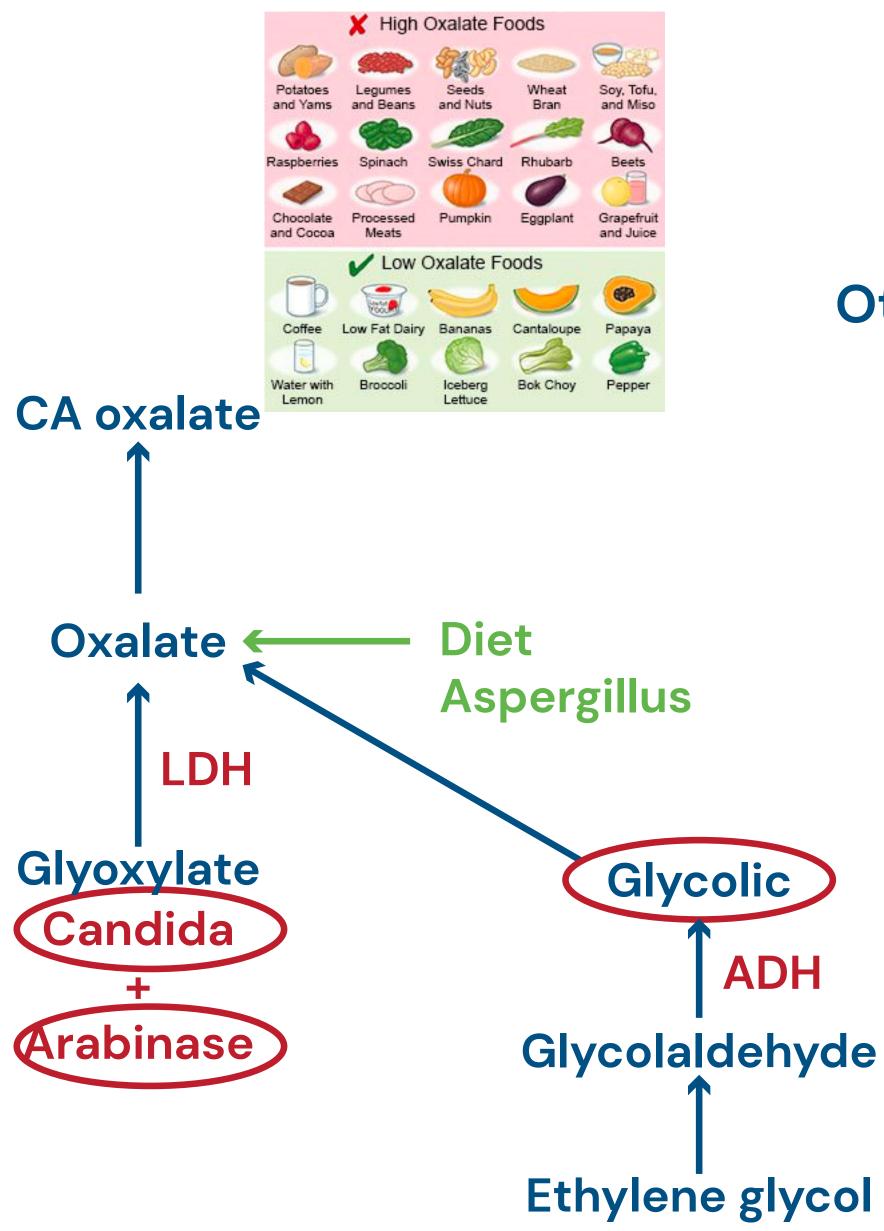
CA oxalate Oxalate Candida produces oxalates LDH Glyoxylate Candida

Conjugates can be formed with minerals like Calcium different tissues, like


- Bone
- Brain
- It is the oxalate level in the blood which tends to drive calcium (or other mineral/metal) oxalate crystal formation in tissues.
- Nerve tissue
- Thyroid gland
- **Deposition of crystals in lungs in Aspergillus** or Candida infections

The insoluble conjugates will be deposited like crystals in

Kidneys (main damage to kidneys + kidney stones) The majority of the kidney stones are Calcium Oxalate



The interconversions of the Oxolates

At the pH of blood (7.4) most oxalate in the dibasic form

Other sources of oxalates:

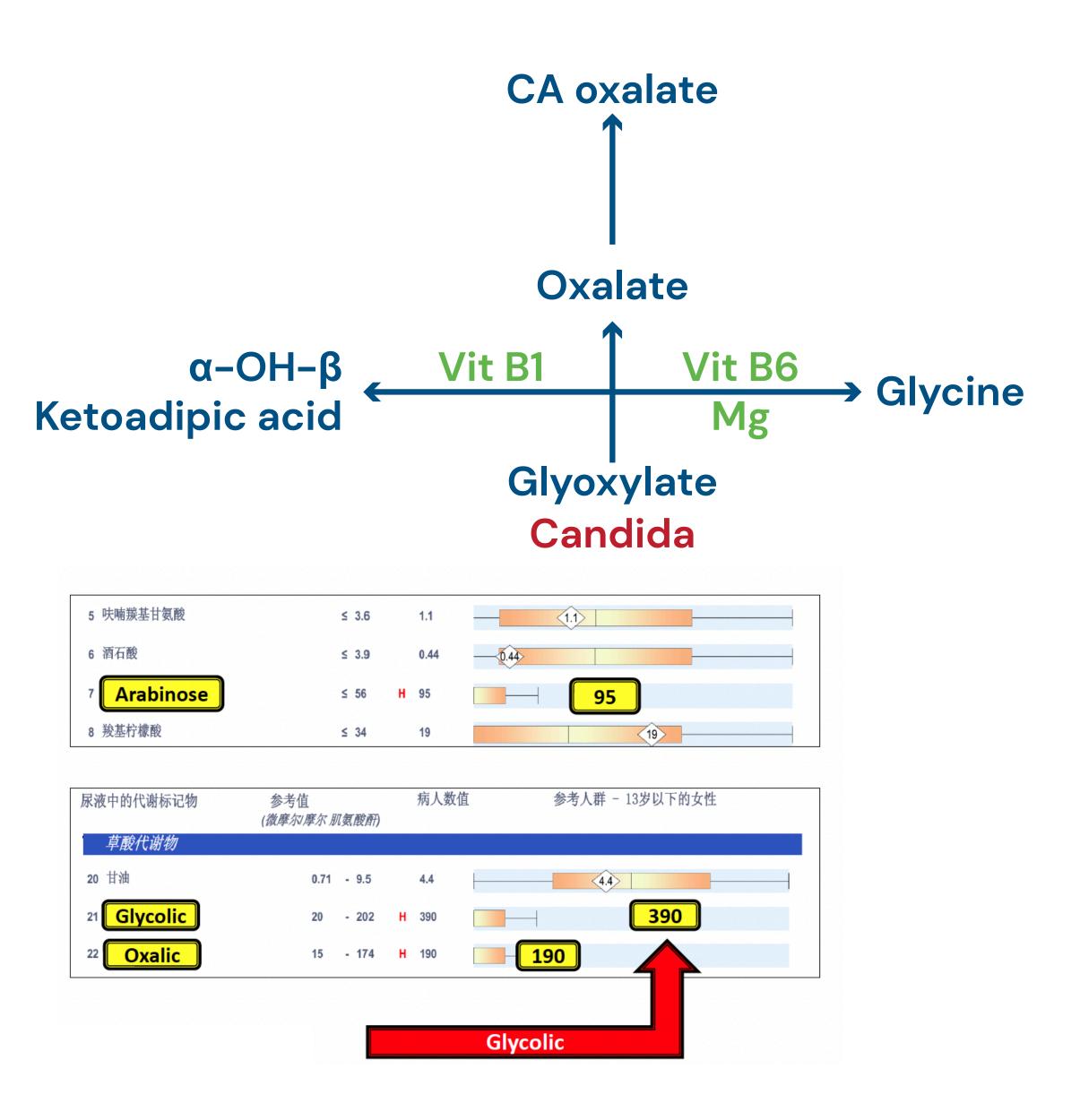
Diet

 Follow a low oxalate diet , while you are addressing the underlying cause

Cooking vegetables will reduce oxalate levels with 50%

2. Aspergillus and Mold /Mycotoxins

If you can't entirely eliminate with adapting diet, often underlying Yeast or Mold infections contribute



More sources of oxalates:

- 3. Fat malabsorption More oxalates are absorbed systemically.
- 4. Monsanto's Glyphosate Oxalates were added to Roundup to enhance the herbicidal effectiveness
- 5. Foods containg PEG (Polyethylene glycol) in sports drinks, laxatives + PEG is main ingredient in antifreeze
- 6. Genetics, enzyme dysfunction

Unabsorbed free fatty acids can bind to Calcium in the gut.

Nutritional deficiencies in Vit B1, Vit B6 & Magnesium can contribute

Supplemental use of bio-active Magnesium & Co-activated Vit B complexes is advised

Cofactor B Complex 1/day

Magnesium Malate 2x2/day

Lyon, E. S., et al. "Calcium oxalate lithiasis produced by pyridoxine deficiency and inhibition with high magnesium diets." Investigative Urology 4.2 (1966): 133–142.dehyde-cysteinylglycine conjugate. Alcohol Clin Exp Res. 2003;10:1613–1621.

References

Finkielstein, V., Goldfarb, D., (2006). Strategies for preventing calcium oxalate stones. Canadian Medical Association Journal , 174 (100). Published online doi: 10.1503/cmaj.051517 Herb, Nutrient, and Drug Interactions. (1st edition). (2008). St. Louis, MO, Mosby, Elsevier Liebman, M., Costa, G. (2000). Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. Journal of Urology, 163(5): 1565-1659. Matkovic, V., Heaney, R.P., (1992). Calcium balance during human growth: evidence for threshold behavior. The American Society for Clinical Nutrition, 55(5): 992-996. Pennistion, K., Nakada, S. (2009). Effect of Dietary Changes on Urinary Oxalate Excretion and Calcium Oxalate Supersaturation in Patients With Hyperoxaluric Stone Formation. Urology, 73(3):484-489. Physicians Desk Reference for Nutritional Supplements. (2nd edition). (2008). Montvale, NJ: Thomson PDR Rushton, HG., Spector, M. (1982). Effects of magnesium deficiency on intratublar calcium formation and crystalluria in hyperoxaluric rats. Journal of Urology, 127(3): 598-604. Poore, R.E., Hurst, C.H., Assimos, D.G., Holmes, R.P. (1997). Pathways of hepatic oxalate synthesis and their regulation. Cell Physiology. 272(1),

C289-C294

Shaw, W. (2009). Autism: Beyond the Basics. Self Published, USA.

Weaver, C. (1994). Age related calcium requirements due to changes in absorption and utilization. Journal of Nutrition, 124(8): 1418S-1425S.

- Poor sleep
- Fibromyalgia
- Vulvar pain
- Joint pains
- Incontinence
- Kidney stones
- Fatigue

Consider oxalates if patients have unexplained symptoms:

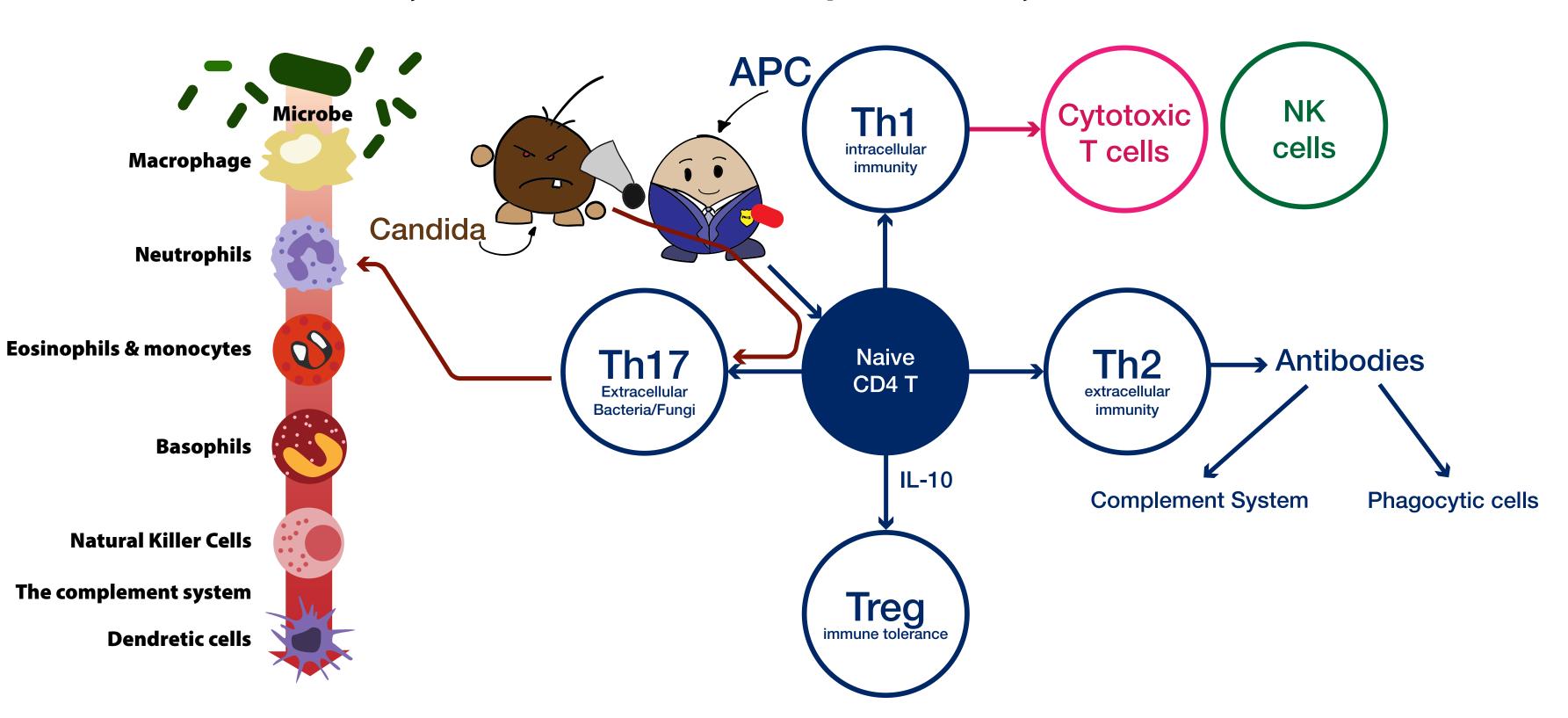
Treatment

- **Treat the underlying infection** Candida, Aspergiullus, Mold
- Adapt diets & avoid foods high in oxalates
- Hydrate
- Vitamin B supplements in bio-active form Cofactor B Complex 1/day during breakfast
- Magnesium & Calcium supplements Magnesium malate 2 x 1 - 2 /day
- Epsom Salt? Glucosamine Sulphate? Oxalates and sulphates use the same transporters Use Sulphate like Glucosamine sulphate (or Epsom Salt baths)

Candida overgrowth and the overlap with neuroinflammation & Autism?

Some of the strange behaviors we have seen in ASD have been caused or exacerbated by Candida problems

- Sugar and carbohydrates cravings intensified
- Anxiety and emotional instability
- Silly, giddy, inappropriate laughter, almost acting drunk
- Gastrointestinal Candidiasis commonly contributes to digestive symptoms in autism
- Gastrointestinal Candidiasis can contribute to the accumulation of various toxic compounds such as Arabinose
 Arabinose is known to alter neural function


Sell, David R., and Vincent M. Monnier. "Structure elucidation of a senescence cross-link from human extracellular matrix: implication of pentoses in the aging process." Journal of Biological Chemistry 264.36 (1989): 21597–21602.

A general and successful treatment approach includes

- 1. Immune support
- 2. Intestinal support
- 3. Eradication of the pathogen and its structures developed to escape to our immune strategies

1. Immune Support

Transfer Factors, general composition, Multimessenger 1 x 3 caps just before breakfast

Innate immunity

NK cell activity \uparrow , IL-10/Treg \uparrow

Adaptive immunity

Butyrate Coated, Butyflam Coated 3x2 caps/day 20 minutes before meals

IL-10/Treg ↑

to support Treg and <u>prevent excessive</u> inflammation or autoimmune dysfunction

Liposomal Glutathione, Trifortify 1 teaspoon/day

To promote Neutrophil activity

To lower Oxidative stress

<u>To create more NK Cell activity</u>

To empower detoxification of fungal toxins

<u>To compensate the loss of glutathione</u> <u>caused by accumulation of acetaldehyde</u>

NK-cells affected by ROS lost the adherence to target cells in both in vitro and in vivo

ROS may change the surface of NK–cells, resulting in an inability of adhesion to target cells

Susceptibility of Natural Killer (NK) Cells to Reactive Oxygen Species (ROS) and Their Restoration by the Mimics of Superoxide Dismutase (SOD)

Kunie Nakamura¹ and Ken-ichi Matsunaga² ¹Molecular Biology Laboratory, Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan; ²Biomedical Research Laboratories, Kureha Chemical Industry, Co. Ltd., Tokyo, Japan.

Natural killer (NK) cells are susceptible to reactive oxygen species (ROS), and lose the activity by the effects of ROS. Cancer bearing hosts usually suffer from oxidative stress (OS), and the NK-activity decreases to a significantly lower level than normal controls. Superoxide dismutase (SOD)-mimicking substances, such as protein-bound polysaccharide of Coriolus versicolor (Fr) QUEL (PSK) and iron-chelating chlorin e6-Na (FeCNa), can restore the NK-activity of cancer bearing hosts, when collaborating with catalase. Incorporation of ³H-thymidine by ROS-treated NK-cells is not affected, indicating that these cells are still active in the nucleic acid metabolism. Intraperitoneal administration of anti-Asialo GM1 antibody extinguished the NK-activity. NK-cells affected by ROS lost the adherence to target cancer cells in both in vitro and in vivo. ROS may change the surface charge of NK-cells to anionic, resulting in an inability of adhesion to target cancer cells which usually show the negative surface charge.

NEW RESEARCH ON LIPOSOMAL GLUTATHIONE

Clinical research presented at the 2015 ILADS medical conference demonstrated red blood cell absorption, increased natural killer cell function & reduced oxidative stress.

This study, conducted at Penn State University, measured the efficacy of Researched Nutritionals' Tri-Fortify[™] liposomal glutathione. The product is formulated to promote healthy intracellular glutathione levels and natural killer cell function.

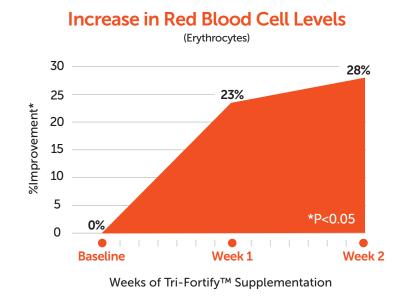
Healthy patients with glutathione levels at the low end of the normal range were included in the study. The patients were divided into two groups, one taking one serving (450mg) per day and the other taking two servings (900mg) per day. Both groups performed fairly close to one another so the results shown below are the combined impact, with a p-value of <0.05.

BACKGROUND

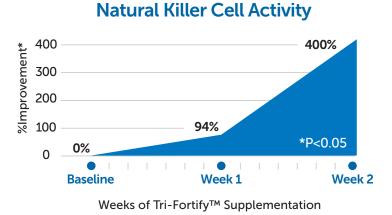
Glutathione is a tri-peptide, composed of the three amino acids: L-glutamic acid, L-cysteine and L-glycine. Healthy glutathione level plays a significant role in promoting normal:

- Detoxification
- Immune Response
- Antioxidant Action

Glutathione is required to maintain the normal function of the liver and to protect DNA, proteins & mitochondria against oxidative stress, while supporting NK cell function & lymphocyte (white blood cell) proliferation.

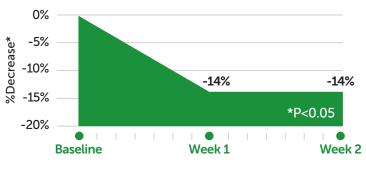

Researchers and clinicians view red blood cell absorption as essential for the body to achieve the benefits of exogenous glutathione supplementation.

RESEARCH RESULTS

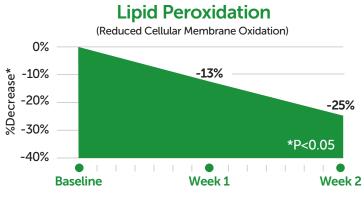

After two weeks of daily oral liposomal glutathione supplementation:

- Red blood cell levels (erythrocytes) increased 28% over the baseline.
- ▶ Natural Killer Cell function increased by 400% over the baseline.
- Oxidative stress, (as measured by lipid peroxidation) decreased by 25%

GLUTATHIONE LEVELS



IMMUNE FUNCTION



OXIDATIVE STRESS MARKERS

Oxidized / Reduced GSH

Weeks of Tri-Fortify[™] Supplementation

Weeks of Tri-Fortify[™] Supplementation

Published study shows Liposomal Glutathione (Trifortify) is increasing Natural Killer Cell **Activity by reducing oxidative stress**

Sinha, Raghu, et al. "Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function." European journal of clinical nutrition 72.1 (2018): 105-111.

Daily dose = 1 teaspoon/day

Bamford, Caroline V., et al. "Streptococcus gordonii modulates Candida albicans biofilm formation Elferink, Jan GR, and Ben M. De Koster. "Glutathione-induced enhancement of neutrophil I ocomotion." Immunobiology 184.1 (1991): 25-36.

Transfer Factors

Khan A., Hansen B., Hill N.O., Loeb E. Transfer factor is the treatment of herpes simplex types 1 and 2. Dermatologica 163, 177–85.

Comparative study of transfer factor and acyclovir in the treatment of herpes zoster. Int J Immunopharmacol. 1998 Oct;20(10):521–35.

Review: Pizza, E. (1998). Transfer Factors reduced both frequency and duration of outbreaks in patients + Only TF increased the number of T-cells.

gia: preliminary report. 2015 November. Townsendletter.

Eur J Clin Nutr. 2018 Jan;72(1):105–111.

Debby Hamilton. Immune Modulation: Research Summary Transfer Factor vs. Colostrum vs. Proline-Rich Peptides. 2019. – on request

Butyrate

Aldo Roda, Patrizia Simoni. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon World J Gastroenterol 2007 February 21; 13(7): 1079-1084

Hu Liu, Ji Wang, Ting He, Sage Becker, Guolong Zhang, Defa Li, Xi Ma. Butyrate: A Double-Edged Sword for Health? Adv Nutr. 2018 Jan 1, 9 (1), 21-29

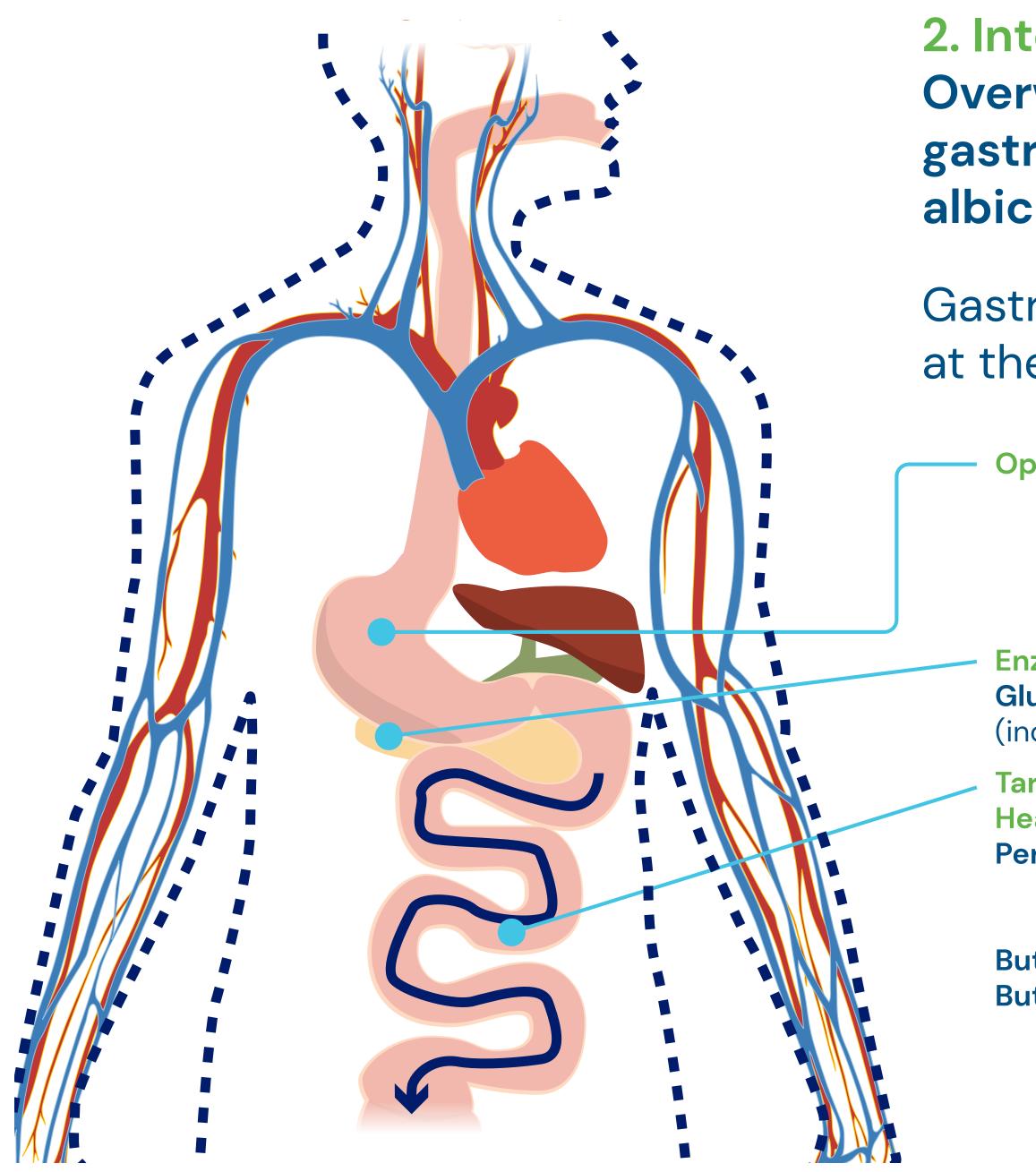
Pharmacol Ther. 2005 Nov 1, 22 (9), 789-94.

Smith DJ, et al. In vitro dissolution and in vivo absorption of calcium [1–(14)c]butyrate in free or protected forms. J Agric Food Chem 2012.

S J Lewis, K W Heaton. Increasing Butyrate Concentration in the Distal Colon by Accelerating Intestinal Transit. Gut. Aug 1997, 41 (2), 245–51.

Stilling RM, et al. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016 – Review.

Chen X, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol 2017.


2018 High Fiber Dietary and Sodium Butyrate Attenuate Experimental

Cleophas, Maartje CP, et al. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Scientific reports 9.1 (2019): 1-10.

- Rita, R., Ellithorpea, B., Settineria, R., & Ellithorpeb, T. Nutrient supplement enhances natural killer cell function in women with chronic fatigue syndrome and fibromyal-
- Sinha, R., Sinha, I., Calcagnotto, A., Trushin, N. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function.

- A Di Sabatino, R Morera, R Ciccocioppo, P Cazzola, S Gotti, F P Tinozzi, S Tinozzi, G R Corazza. Oral Butyrate for Mildly to Moderately Active Crohn's Disease. Aliment
- Ferreira TM, et al. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration. Lipids 2012.
- En-De Hu, Da-Zhi Chen, Jin-Lu Wu et al. Autoimmune Hepatitis Through Regulation of Immune Regulatory Cells and Intestinal Barrier. Cell Immunol , 328, 24–32. Jun

2. Intestinal support **Overwhelming evidence suggests that the** gastrointestinal tract is the main source of Candida albicans infections

Gastric Acid + pepsine, Guttae Pepsine, 3x5 drops/day at the start of each, gradually build up until 3x20drops

Optimize gastric acid level

- Prevents pathogenic overgrowth
- First line defense
- Essential for activation of the pancreas to secrete digestive enzyme
- polypeptides \rightarrow amino acids (\downarrow auto-immune reactivity)

Enzyme complex to optimize digestion

Gluten DPP4 3x1/day at the start of each meal

(including gluten modifying enzymes)

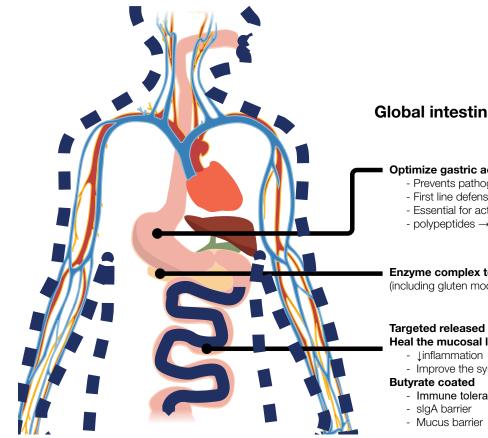
Targeted released Glutamine & cofactors

Heal the mucosal lining and tight juction optimazing (pH 6-7)

Permplus Coated 3x2 20minutes before meals

- ↓inflammation
- Improve the synthesis of s IgA by the intestinal lymphocytes

Butyrate coated


Butyflam Coated 3x2 20minutes before meals

- Immune tolerance intestinal & systemic
- slgA barrier
- Mucus barrier

GUT PROTOCOL

Global intestinal is a multilevel support

Optimize gastric acid level

- Prevents pathogenic overgrowthFirst line defense
- Essential for activation of the pancreas to secrete digestive enzyme
 polypeptides → amino acids (↓auto-immune reactivity)

Enzyme complex to optimize digestion (including gluten modifying enzymes)

Targeted released Glutamine & cofactors Heal the mucosal lining and tight juction optimazing (pH 6-7)

- ↓inflammation - Improve the synthesis of s IgA by the intestinal lymphocytes
- Butyrate coated Immune tolerance intestinal & systemic

protecting our health order@nutrined.nl _3+13 820 0331 _ www.nutrined.com

Guttae Pepsini

indication	Stomach acid deficiency Poor digestion Intestinal malabsorption Rebuilds intestinal pH		
dosage	3 x 10 - 20 drops per day at the start of each meal, dilute in water and swallow immediately.		
packaging	30 ml per bottle		
composition	Purified water	5,3 ml	
(amount per 30 drops)	Glycerol Hydrochloric acid HCl 37% Pepsine	10 ml 2,7 ml 2 ml	

Gluten DPP IV Complex

indication	DPP-IV proteolytic enzyme complex. Breaks down proline residues in Gluten and decreases the intestinal immune reaction Intolerance for gluten and/or casein. Indigestion, gas, bloating, constipation and diarrhea.		
dosage	3 x 1 caps per day at the beginning of each meal.		
packaging	90 vegecaps per container		
daily dose (based on 3 vegecaps)	Digestive enzyme blend: Amylase 5000 DU, Protease 4.5 24.500HUT, Gluco-amylase 16 AGU, 4 Protease 6.0 7500 HUT, Lipase 3000 FIP, Cellulase 7500 CU, Alpha-galactosidase 125 GalU, Pectinase 12 endo-PGU, Protease 3.0 10 SAPU, Phytase 5 FTU, Xylanase 100 XU, Hemicellulase 75 HCU.	150 mg	
	Hemicellulase (1500 U) Phytase (7500 U)	75 mg 75 mg	
	Biocore DPP IV: Protease (Aspergillus oryzae 18000 HUT / 300 DPP-IV, Aspergillus meleus 5.1 AP)	60 mg	
	Lactase (3900 U)	60 mg	

Perm Plus Coated

indication	Rebuilding intestinal permeability and immunity with targeted released molecules.		
dosage	The first month: 3 x 2 tablets per day. Then take 3 x 1 tablet per day 20 min. before food.		
packaging	90 tablets per container		
composition	L-Glutamine	975 mg	
(amount per 3 tablets)	N-Acetyl-D - Glucosamine	375 mg	
	N-Acetylcystein	300 mg	
	Liquorice root powder (Glycyrrhiza Glabra L.)	255 mg	
	Gamma oryzanol	180 mg	
	L-Carnosine	60 mg	
	Zinc (as zinc bisglycinate and zinc methionin)	22,5 mg	

Value of

indication	Neuroin Immune Remode
dosage	3 x 2 ca
packaging	180 coa
composition (amount per 6 caps)	Butyrate

Butyflam Coated

Butyrate is a short-chain fatty acid produced by the intestinal bacteria through fermentation of non-digestible fibers. Butyflam Coated delivers bioavailable levels of butyrate in our intestines to guarantee immune tolerance and avoid excessive inflammation or auto-immune reactions.

nflammation ne modulating (T reg + IL-10 anti-inflammation) deling intestinal barrier function

aps per day, 20 minutes before meals

ated caps per container

te - 3000 mg

esophagitis." Digestive diseases and sciences 58.5 (2013): 1282–1286.

PPI-induced elimination of gastric acid is a major mechanism leading to more oro-pharyngeal and intestinal Candida colonization

Sherrington, Sarah L., et al. "Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition." PLoS pathogens 13.5 (2017): e1006403.

Kim, Kyung–Yup, et al. "Acid suppression therapy as a risk factor for Candida

Glutamine targeted released, Permplus Coated 3x2 tabs/day 20 minutes before meals

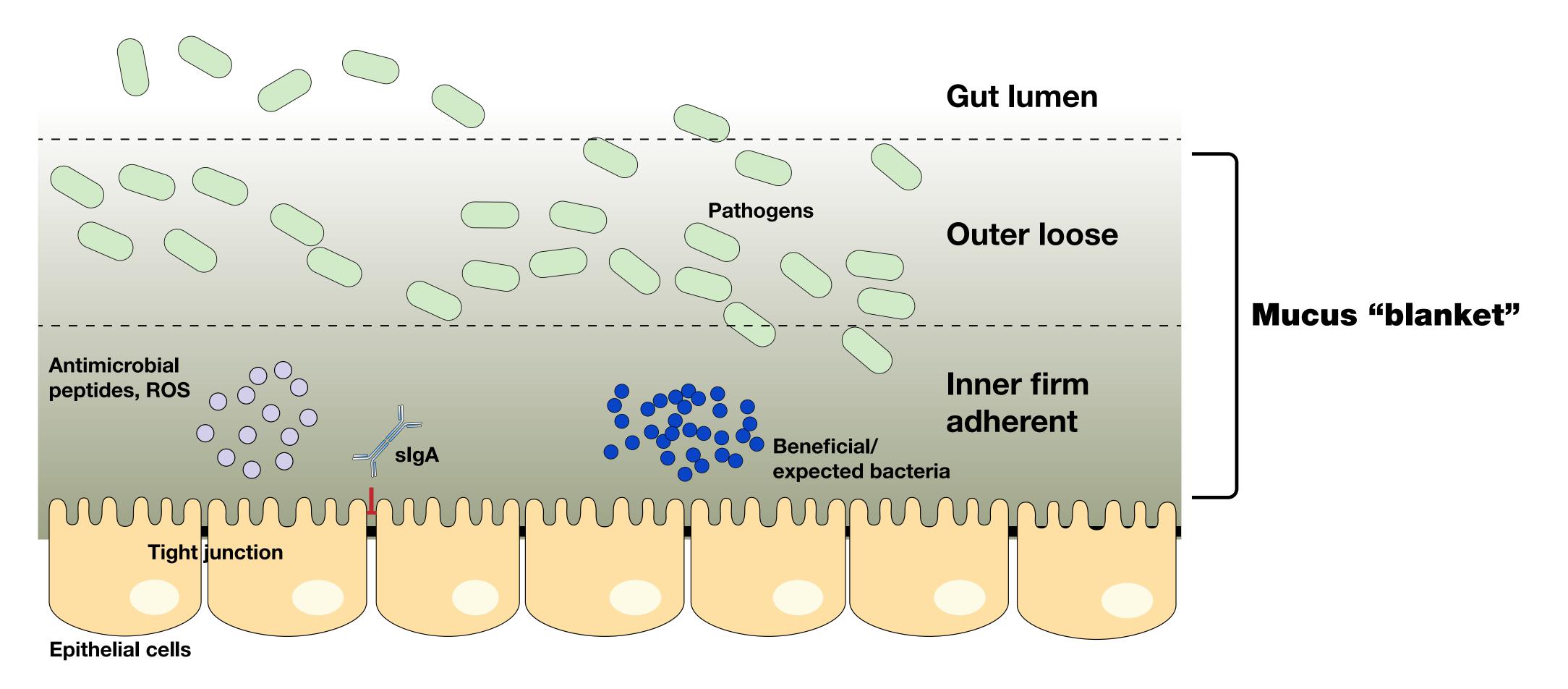
Bai, Xiao–Dong, Xian–Hua Liu, and Qing–Ying Tong. "Intestinal colonization with Candida albicans and mucosal immunity." World Journal of Gastroenterology: WJG 10.14 (2004): 2124.

Studies observed the relationship between intestinal colonization with Candida albicans and mucosal secretory IgA, slgA's The decreasing number of Candida albicans in intestine is related to the increased level of slgA's

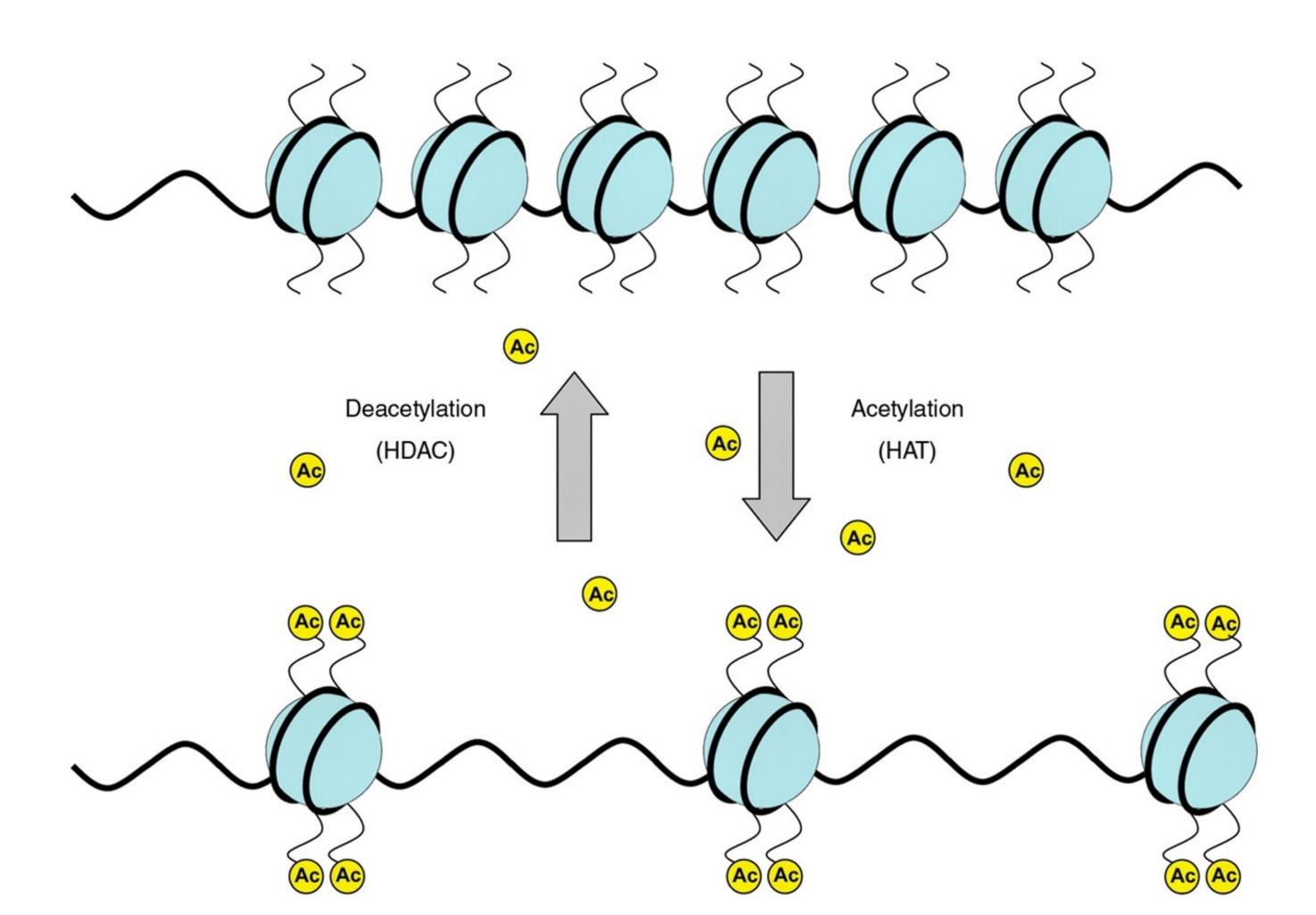
Butyrate Coated, Butyflam Coated 3x2 caps/day 20 minutes before meals

Renewing epithelial intestinal lining ↑

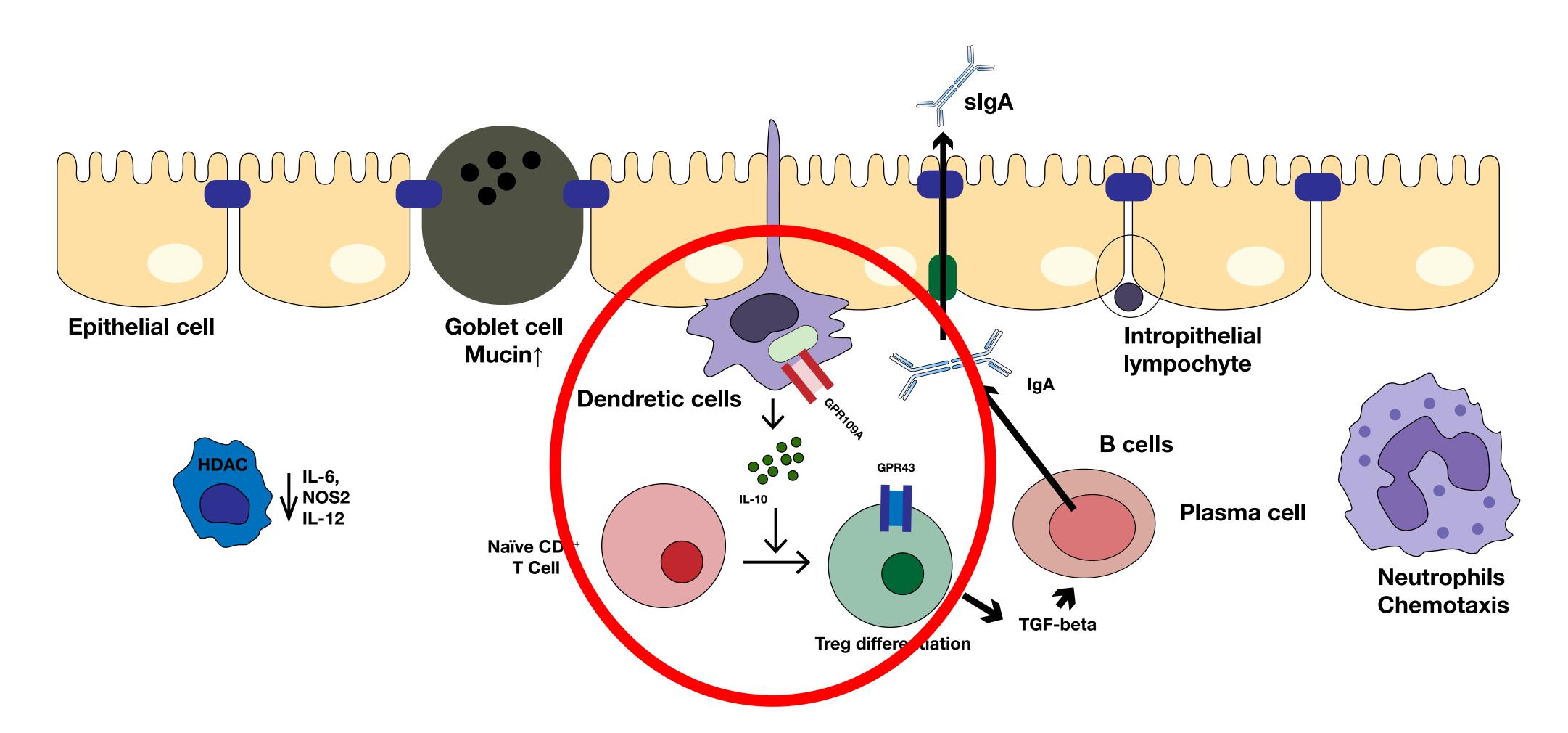
Mucus ↑

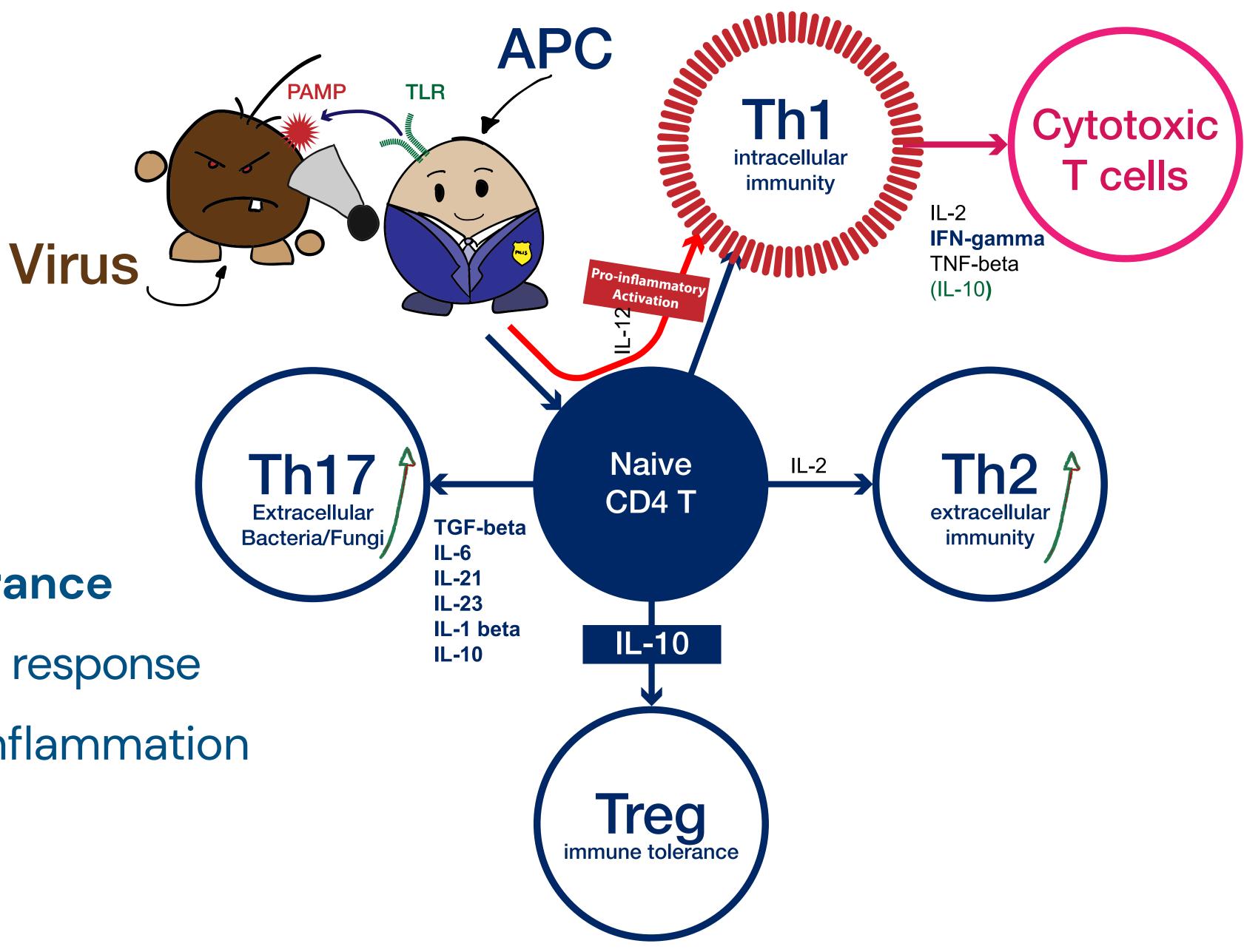

Neutrophil Chemotaxis ↑

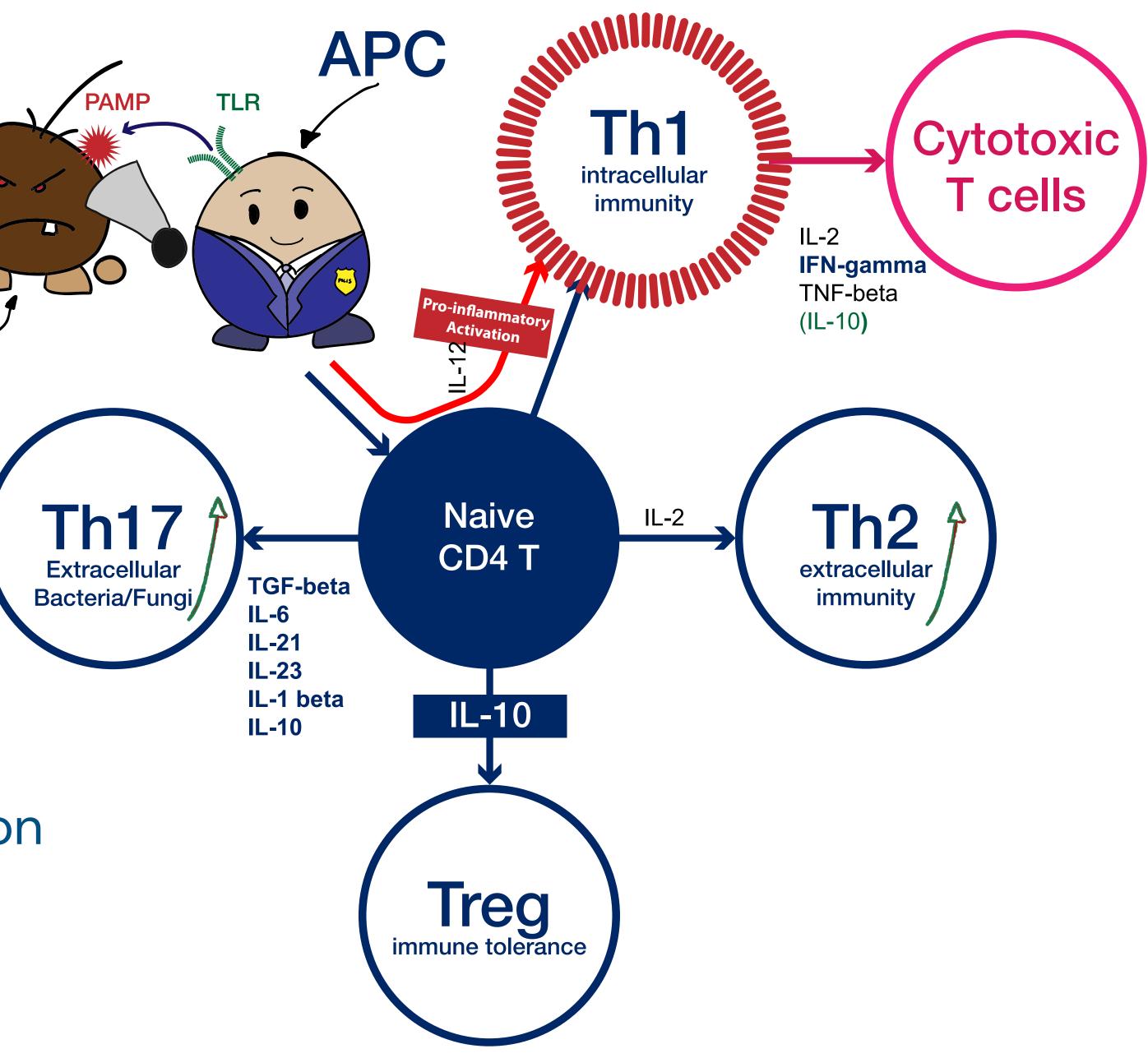
slgA's ↑


From host prebiotic

Mucin harvesting bacteria that release glycans = mucin derived glycans are fermented by other bacteria to form butyrate


Butyrate inhibits HDAC (histone deacetylase) - this modification is changing the gene expression


Immune modulation / anti inflammation on local level:



Gene expression is modified in Dendritic Cells IL-6 is suppressed = more IL-10 More differentiation to T regs

T reg & IL-10 = self tolerance

- ↓ Risk for autoimmune response
- ↓ Risk for excessive inflammation

3. Eradication of the pathogen and its structures developed to escape to our immune strategies

Current antifungal drugs have only two specific targets

Ergosterol biosynthesis

What are Azoles?

Azoles are synthetic antifungals with broad-spectrum fungistatic activity against yeasts and fungi, including candidal species. By blocking fungal cytochrome P450-dependent enzymes, azoles disrupt the synthesis of ergosterol, which is the principal sterol in fungal cell membranes. The two subclasses of azoles are imidazoles (eg, clotrimazole, miconazole, econazole, ketoconazole) and triazoles (eg, fluconazole, itraconazole).

What are Echinocandins?

Echinocandins are a class of antifungal drugs that target the fungal cell wall. They are lipopeptide molecules that noncompetitively inhibit (1,3) beta-d-glucan synthase enzyme. This enzyme forms glucan, a major component of the fungal cell wall therefore by inhibiting its synthesis fungal cell walls are damaged.

cell walls are damaged

Caspofungin, Micafungin, Anidulafungin

Natural research-based antifungal remedies

Artemisinin

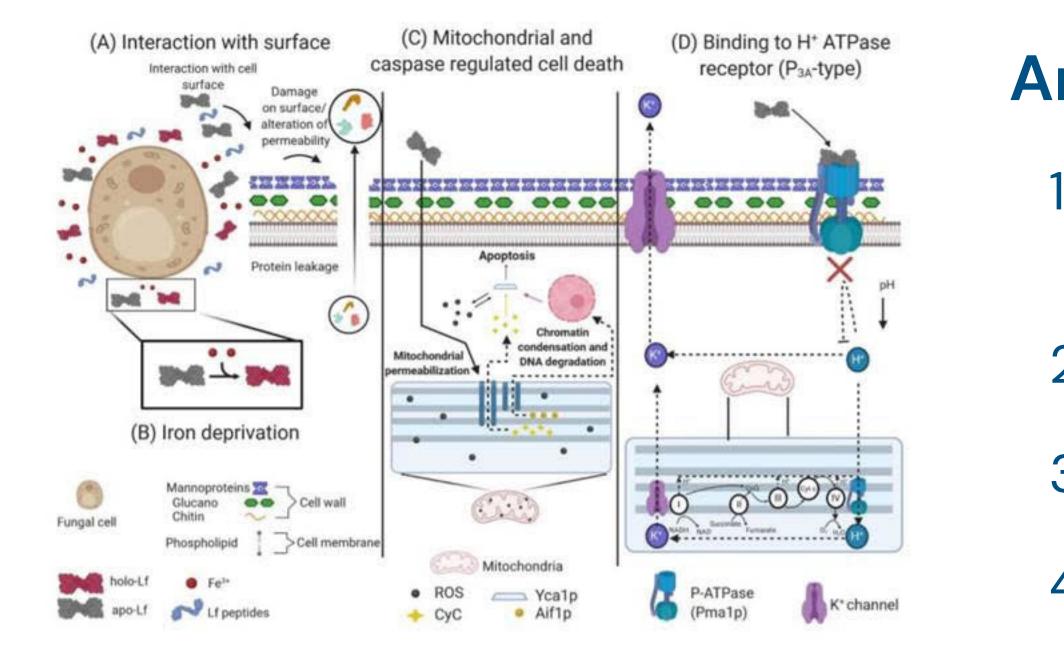
Artemisin Solo 2x2 caps/day 30 minutes before meals 5 days in a row / interruption during the weekend

Khatoon, N., et al. "Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles." Journal de mycologie medicale 29.3 (2019): 201-209. Das, Sourav, et al. "Cytotoxic action of artemisinin and scopoletin on planktonic forms and on biofilms of Candida species." Molecules 25.3 (2020): 476. De Cremer, Kaat, et al. "Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms." Antimicrobial

agents and chemotherapy 59.1 (2015): 421-426.

Lactoferrin

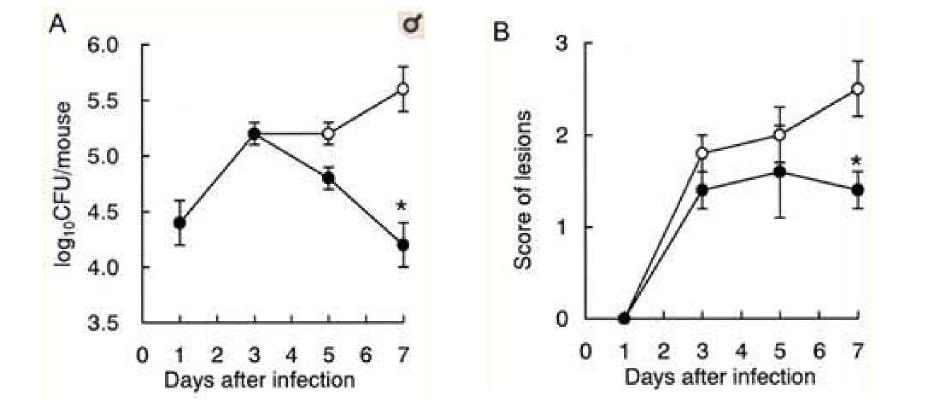
Lactoferrin is a glycoprotein with anti-infectious properties


cells and control the level of free iron in the blood and external secretions

Synthesized by the mammary gland, abundant in colostrum mucosal surfaces to contribute in our innate immune response

After digestion partly degraded by pepsin in into Lactoferricins

- Lactoferrin is one of the transferrin proteins that transfer iron to the
- Human LF & Bovine LF : the amino acid sequence overlap for 70% The concentration is much higher in human milk than in Bovine mil
- Also present in exocrine secretions like salvia & tears + present on



Antifungal activity

- 1. Lactoferrin and lactoferricin B cause an alteration in cell surface permeability of the fungus.
- 2. Lactoferrin binds Iron, necessary for fungal growth
- 3. Mitochondrial and caspase-regulated cell death
- 4. Binding to H+-ATPase receptor (P3A-type)

Oral Lactoferrin Treatment of Oral Candidiasis in Mice

- bLF administration 1 day before infection
- End of the study: day 7 after inoculation

Acid resistant: DR capsules The rate of partial conversion in Lactoferricin depends on moment of intake

In Bacterial infections: Lactoferrin and lactoferricin B are both active ingredients in antibacterial action. Use: 2 x 2 DR caps / day during meals

In Viral infections: Lactoferrin, and not lactoferricin B, is the required active ingredient in antiviral action. Use: 3 x2 DR caps 1 hour before or 2 hours after meals

In fungal infections: Lactoferrin and lactoferricin B are both required for antifungal activity Use: 2x2 DR caps / day during meals

Intake during meal = Lactoferrin + Lactoferricin Intake separated from meals = Lactoferrin

new

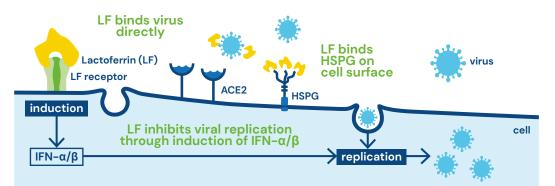
The multifunctional role of Lactoferrin

Lactoferrin is a multifunctional glycoprotein existing in all human bodily fluids. **Ferrin** refers to its ability to bind free iron ions.

Lactoferrin acid resistant contains 100 mg Lactoferrin per capsule, a pure and specific whey protein of bovine origin.

The use of acid resistant capsules ensures stability and targeted activity.

indication	Antiviral activity Antibacterial activity (including Helicobacter pylori) Antifungal activity (including Candida albicans)	
dosage	3 x 2 caps per day	
packaging	84 acid resistant capsules per container	
composition (amount per 6 caps)	Lactoferrin - 600 mg	


Lactoferrin is **casein-free**. During the manufacturing process, Lactoferrin is washed of **lactose** to a content of **less than 0,1%**. People who may have a sensitivity to lactose should not react to this low level of lactose.

Antiviral

Mechanism:

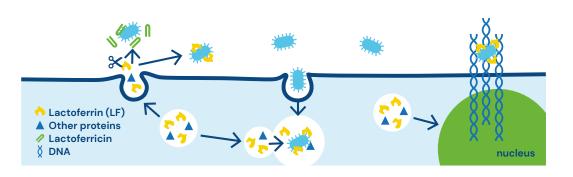
The antiviral effect of LF lies mainly in the early phase of the infection. Lactoferrin prevents the infection of host cells by viruses, but also inhibits the growth of viruses after the host cells have been invaded.

Lactoferrin participates in the innate part of our immune defense, increasing NK-cell activity and TH1 cytokines. Lactoferrin partners very efficiently with Transfer Factors (Multimessenger: NK cell activity + IL-10). Predetermined antiviral mechanism on 3 levels:

Recommended daily dosage in viral threats Lactoferrin acid resistant 100mg

- Preventive measures: 3 x 1 capsule/day separated from meal
- Curative treatment: 3 x 2 capsules/day separated from meal

Antibacterial


Mechanism:

The 3 epitopes for Lactoferrin's antibacterial activity:

- Lactoferrin binds iron, required for the growth of bacteria
- Lactoferrin binds membrane
 proteins to disrupt permeability
- Competition for binding site(s)

Helicobacter pylori:

- Detaching the bacterium from the gastric epithelium
- Exerting a direct antibacterial effect

Recommended daily dosage in bacterial threats Lactoferrin acid resistant 100mg

- Preventive measures: 3 x 1 capsule/day during meal
- Curative treatment: 3 x 2 capsules/day during meal

Antifungal

Mechanism:

- Lactoferrin binds directly to the fungal cell surface, leading to cell membrane damage and leakage
- Lactoferrin sequesters iron resulting in a fungistatic effect and inhibition of fungal growth

Candida: synergistic fungistatic effects of Lactoferrin in combination with antifungal drugs.

Recommended daily dosage in fungal threats

- Lactoferrin acid resistant 100mg
- Preventive measures:
- 3 x 1 capsule/day during mealCurative treatment:
- 3 x 2 capsules/day during meal

Lactoferrin is included in different specific anti-infectious treatment plans, see page 4.

References

Fernandes KE, Carter DA. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front Microbiol. 2017;8:2. Published 2017 Jan 18. González-Chávez, Susana A., et al. "Lactoferrin: Structure, Function and Applications." International Journal of Antimicrobial Agents, vol. 33, no. 4, 2009, pp. 301.e1-301.e8. Hendrix, Abernethy, Sloane, Misuraca, &. Moore. "Lactoferrin as a Natural Immune Modulator." Bone, vol. 23, no. 1, 2013. Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother. 1999;43(11):2635-2641. Kanwar JR, Roy K, Patel Y, et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules. 2015;20(6):9703-9731. Published 2015 May 26. Komatsu, Akino, et al. "Effects of Bovine Lactoferrin to Oral Candida Albicans and Candida Glabrata Isolates Recovered from the Saliva in Elderly People." Odontology, vol. 103, no. 1, 2013, pp. 50–55. Kuipers, M. E., et al. "Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against Clinical Candida Isolates." Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, 1999, pp. 2635–41 Nikawa H, Samaranayake LP, Tenovuo J, Pang KM, Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993;38(12):1057-1063. Takakura N, Wakabayashi H, Ishibashi H, et al. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob Agents Chemother. 2003;47(8):2619-2623. doi:10.1128/AAC.47.8.2619-2623.2003 Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, et al. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed

by Pathogens. Molecules. 2020;25(24):5763. Published 2020 Dec 8.

Microbinate®

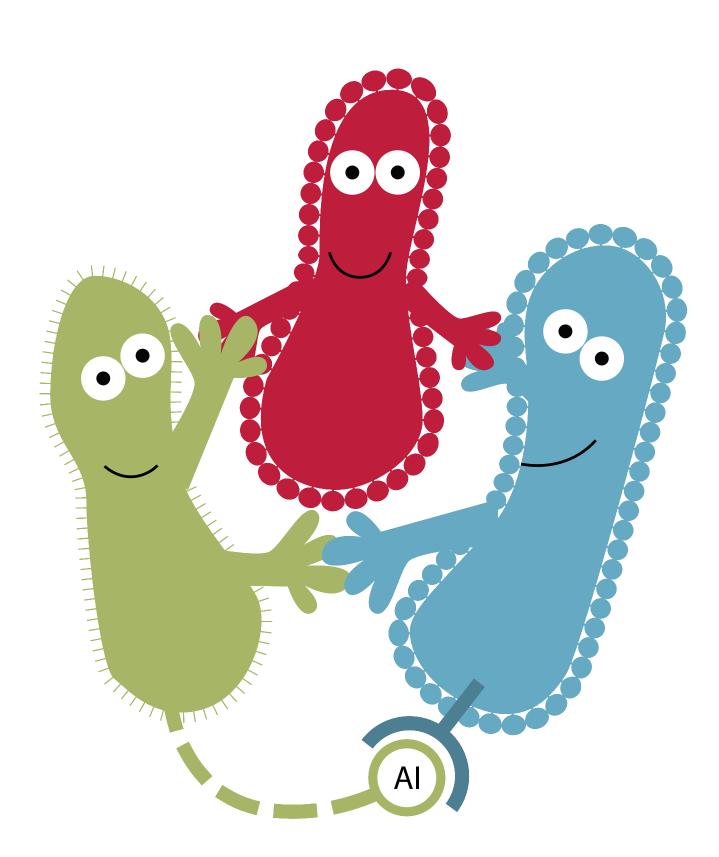
indication	Microbinate is designed to promote the body's healthy respon to microbial challenges, internally and externally. Indicated in intestinal infections like SIBO next to general Gut Protocol.		
dosage	2 x 1 caps per day during the first week then 2 x 2 caps per day. For optimal results take away from food.		
packaging	120 vegecaps per container		
	Monolaurin – Inosine	310 mg	
composition	Oregano extract	300 mg	
(amount per 2 vegecaps)	Olive leaf extract	250 mg	
	Allicin	200 mg	
	CurcuWIN [™] (Turmeric extract molecular dispersion technology)	100 mg	

Please find our referenced version on the professional section of our website. All information is exclusively aimed at and released to an audience of health care professionals.

Elim-A-Cand[™]

indication	Eradication of Candida infection			
dosage	Starting dose for adults: 2 x 5 drops/day in water away from food. Gradually increase dose every 2 days up to 2 x 40 drops/day. Patients are advised to take a 3-day break every 4-8 weeks.			
packaging	120 ml per bottle			
composition (amount per 40 drops)	Cinnamon (Cinnamomum Verum) Clove (Syzgium Aromaticum)	4 parts 4 parts		
	Marshmallow Root (Althaea Officinalis) Pau D' Arco (Tabebuia Impetiginosa) Slippery Elm (Ulmus Rubra) Berberine	4 parts 2 parts 2 parts 1 parts		
	Stillingia sylvatica	0.5 parts		

Please find our referenced version on the professional section of our website. All information is exclusively aimed at and released to an audience of health care professionals.


Fungal biofilms are largely resistant to current antifungal drugs, high antifungal doses together with removal of the colonized medical device are generally required

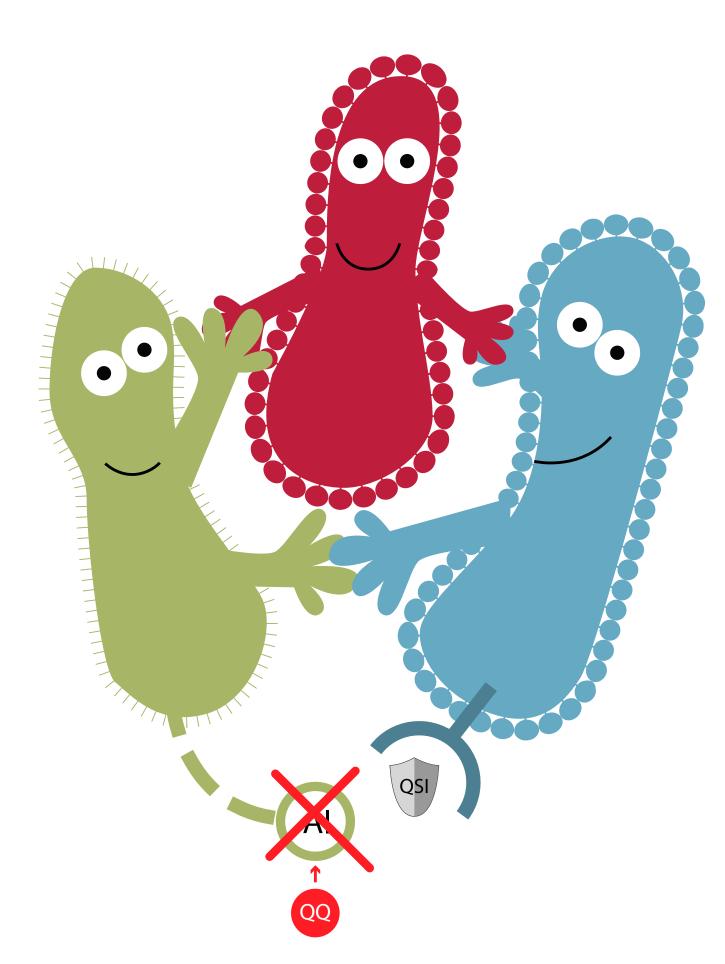
- removal of some devices is costly and could be dangerous
- high doses of antifungals can cause complications, critically ill patients don't tolerate

More research and better understanding of the molecular biofilms

mechanisms underlying biofilm formation and maintenance could lead to development of new antifungals that specifically target

How do we address biofilms?

We address the molecular communication systems the germs, forming the biofilm community, are using to synchronize the expression of genes


These genes regulate:

- Virulence factors
- Synthesis of biofilm

Communication = Exchange of chemical mediators called autoinducers (Al's) = Quorum sensing (QS) is a collective adaptation & coordination of behavior

We interfere using:

Autoinducers (Al's)

- Quorum Sensing inhibitors (QSIs) to block the action of the
- Quorum Quenching Enzymes (QQ) to degrade the Autoinducers
- **Recent studies have showed that these strategies are promising** routes to decrease bacterial pathogenicity and break down biofilms

Study-based Molecules inhibiting QS

Azithromycin

Nalca Y., Jänsch L., Bredenbruch F., Geffers R., Buer J., Häussler S. (2006). Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAOI: a global approach. Antimicrob. Agents Chemother. 50, 1 680–1688. 10.1128/AAC.50.5.1680–1688.2006

But ... In the current context of antibiotic resistance, novel therapeutic approaches have been introduced to inhibit QS:

Cranberry

Rajkumari, Jobina, et al. "Attenuation of quorum sensing controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by pentacyclic triterpenes, betulin and betulinic acid." Microbial pathogenesis 118 (2018): 48–60.

Feldman, Mark, et al. "Interference of cranberry constituents in cell–cell signaling system of Vibrio harveyi." Current microbiology 59.4 (2009): 469–474.

Rosemary

de Oliveira, Jonatas Rafael, et al. "Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells." Experimental Biology and Medicine 242.6 (2017): 625–634.

De Oliveira, Jonatas Rafael, Samira Esteves Afonso Camargo, and Luciane Dias De Oliveira. "Rosmarinus officinalis L.(rosemary) as therapeutic and prophylactic agent." Journal of biomedical science 26.1 (2019): 5.

• Berberine

Xie, Yufei, Xiaosong Liu, and Peiru Zhou. "In vitro Antifungal Effects of Berberine Against Candida spp. In Planktonic and Biofilm Conditions." Drug Design, Development and Therapy 14 (2020): 87.

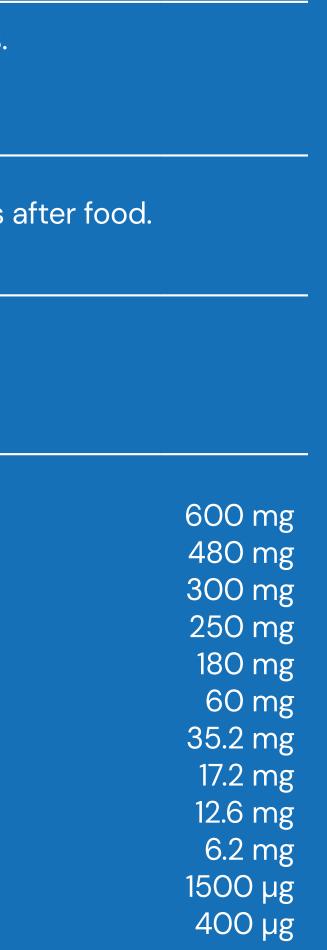
• Peppermint oil

Budzynska, Aleksandra, et al. "Antibiofilm activity of selected plant essential oils and their major components." Pol J Microbiol 60.1 (2011): 35–41.

+ Quorum Quenching enzymes

Fetzner, Susanne. "Quorum quenching enzymes." Journal of biotechnology 201 (2015): 2–14.

Deng, Yinyue, et al. "Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover." Proceedings of the National Academy of Sciences 109.38 (2012): 15479–15484.


Weiland-Bräuer, Nancy, et al. "Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme." Frontiers in microbiology 7 (2016): 1098.

BioDisrupt™

indication	Breakdown of bacterial and fungal biofilms. Induced hypercoagulation.
dosage	2 x 2 caps per day 1 hour before or 2 hours
packaging	120 vegecaps per container
composition (amount per 4 vegecaps)	N-Acetyl cysteine Cranberry (Vaccinium macrocarpon) Berberine (Berberis vulgaris) Rosemary (Rosmarinus officinalis) Peppermint oil (Mentha piperita) Lysozyme (from egg white) Serratiopeptidase Beta glucanase Lipase Protease Cellulase Hemicellulase

Please find our referenced version on the professional section of our website. All information is exclusively aimed at and released to an audience of health care professionals.

BioDisrupt® Clinical Research Executive Summary

(Research has been submitted for peer- review)

Objectives

The objective of this study was to investigate the efficacy of BioDisrupt® to positively impact established biofilm communities.

Primary Outcomes Measured

Disruption of biofilm mass & biofilm metabolic activity on established biofilms of the following microbial species:

- Candida albicans
- Staphylococcus aureus
- Staphylococcus simulans

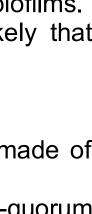
Study Design

This in vitro study was conducted in a research lab that grew the biofilms and then treated them with BioDisrupt[®].

BioDisrupt® Anti-Biofilm Highlights

- Candida albicans
 - Disrupted & reduced biofilm mass & metabolic activity within 24 hours
 - Biofilm mass vs untreated control: -65%
 - Biofilm metabolic activity vs untreated control: -77%
- > Staph aureus
 - Rapidly disrupted biofilm mass & metabolic activity
 - Biofilm mass vs untreated control: -72%
 - Biofilm metabolic activity vs untreated control: -44%

Staph simulans


- Rapidly disrupted biofilm mass & metabolic activity
- Biofilm mass vs untreated control: -43%
- Biofilm metabolic activity vs untreated control: -36%

Researchers' Conclusions

BioDisrupt®, a multi-mechanisms of action supplement, is "efficacious at disrupting established biofilms." "The bioavailability of the active herbal and enzyme components of [BioDisrupt] makes it likely that consumption of [BioDisrupt] may affect established biofilm in tissues."

The bioavailability of the active herbal and enzyme components of BioDisrupt® include:

- ➤ EnzymeDisrupt[™] blend contains enzymes to break down the biofilm structural matrix made of proteins, carbohydrates, and fats
- > HerbDisrupt[™] blend contains herbs to provide anti-microbial, anti-adhesion, and anti-quorum sensing properties

Additional options.

Oral liposomal Glutathion (Trifortify)

Klare, William, et al. "Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome." Antimicrobial agents and chemotherapy 60.8 (2016): 4539-4551.

The incidence of fungal infections has become a worldwide health issue

Most important comorbidities are population aging, cancer development, autoimmune disorders, immune suppressive therapies and defects in our immune defense systems

Cases of invasive fungal disease are rising as the at-risk population continues to expand.

- Immune suppression
- Climate changes

The WHO published a report FPPL (First Priority Pathogens list) https://www.who.int/publications/i/item/9789240060241

Aims:

- Direct and drive research efforts
- Monitor antifungal development
- Promote knowledge
- sistance

Increased chemical use leading to more medication resistance

Inform politicians to implement measures to address antifungal re-

Pathogens have been listed in categories Critical (most dangerous) priority group

- Cryptococcus neoformans
- Candida auris
- Aspergillus fumigatus
- Candida albicans

The supportive therapies play a crucial role and determine the success of the treatment of this opportunistic infection

Immune support	Multimessenger	Eradication of the	Artemisinin SOLO
	90 caps	pathogen and its	90 vcaps
	Dose: 1 x 3 caps per day, just before breakfast	structures developed to escape to our immune	Dose: 2 x 2 caps per day, 30 minutes before meals - 5 days in a row & interruption during the weekend
	Tri-Fortify Watermelon or Orange	strategies	
	236 ml		Lactoferrin acid resistant 100mg
	Dose: 1 teaspoon/day, separated from meals		84 acid resistant caps
			Dose: 3 x 2 caps per day during meals
	Butyflam coated		0
	180 coated caps		Elim-A-Cand
	Dose: 3 x 2 caps per day, 20 min before meals		120 ml
	Dobe. O X 2 cups per duy, 20 min berore medio		Dose:
			start dose adults days 1-3:
Intestinal support	Guttae Pepsini		3–5 drops in 30–85ml water in morning and evening
	30 ml		days 4 and beyond:
	Dose: 3 x 10 - 20 drops at the start of the meal and with a		Increase 3-5 drops every other day, in both morning
	small amount of water (swallow immediately)		
			and evening,
	Gluten DPP IV Complex		to 2 times 40 drops per day
	90 vcaps		\mathbf{M} ievelsizete (2 d. zeretse)
	Dose: 3 x 1 caps per day, at the beginning of the meal		Microbinate (2 – 4 months)
			120 vcaps
	Perm Plus Coated tablets		Dose: first week: 2 x 1 caps per day
	90 coated tablets		then: 2 x 2 caps per day
	Dose: first month: 3 x 2 tablets per day		
	Then: 3 x 1 tablet per day, 20 minutes before the	Biofilm disruption	BioDisrupt
	meal	Dominiasiaption	120 vcaps
			Dose: 2 x 2 caps per day, separated from meals
	Butyflam coated		$DOSE$, $Z \land Z Caps per Cay, separated nonninears$
	180 coated caps		
	Dose: 3 x 2 caps per day, 20 min before meals		

Reduction of Fungal Toxicity **Co-Factor B Complex** 30 tablets Dose: 1 tablet per day during breakfast

Tri-Fortify Watermelon or Orange 236 ml Dose: 1 teaspoon/day, separated from meals

Physician's Daily60 vcapsDose: 1 caps per day with food

References

Albuquerque, Patrícia, and Arturo Casadevall. Quorum sensing in fungi–a review. Medical mycology 50.4 (2012): 337-345.

Pappas, Peter G., et al. "Invasive candidiasis." Nature Reviews Disease Primers 4.1 (2018): 1-20.

Pfaller, Michael A., and Daniel J. Diekema. "Epidemiology of invasive mycoses in North America." Critical reviews in microbiology 36.1 (2010): 1–53.

Tri-Fortify

Bamford, Caroline V., et al. "Streptococcus gordonii modulates Candida albicans biofilm formation Elferink, Jan GR, and Ben M. De Koster. "Glutathione-induced enhancement of neutrophil locomotion." Immunobiology 184.1 (1991): 25–36.

Klare, William, et al. "Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome." Antimicrobial agents and chemotherapy 60.8 (2016): 4539–4551.

Multimessenger

Comparative study of transfer factor and acyclovir in the treatment of herpes zoster. Int J Immunopharmacol. 1998 Oct;20(10):521–35. Debby Hamilton. Immune Modulation: Research Summary Transfer Factor vs. Colostrum vs. Proline–Rich Peptides. 2019. – on request

Hernández-Santos, Nydiaris, and Sarah L. Gaffen. "Th17 cells in immunity to Candida albicans." Cell host & microbe 11.5 (2012): 425–435.

Khan A., Hansen B., Hill N.O., Loeb E. Transfer factor is the treatment of herpes simplex types 1 and 2. Dermatologica 163, 177–85.

Review: Pizza, E. (1998). Transfer Factors reduced both frequency and duration of outbreaks in patients + Only TF increased the number of T-cells.

Rita, R., Ellithorpea, B., Settineria, R., & Ellithorpeb, T. Nutrient supplement enhances natural killer cell function in women with chronic fatigue syndrome and fibromyalgia: preliminary report. 2015 November. Townsendletter.

Sinha, R., Sinha, I., Calcagnotto, A., Trushin, N. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018 Jan;72(1):105–111.

Butyflam Coated

Aldo Roda, Patrizia Simoni. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon World J Gastroenterol 2007 February 21; 13(7): 1079–1084

Hu Liu, Ji Wang, Ting He, Sage Becker, Guolong Zhang, Defa Li, Xi Ma. Butyrate: A Double-Edged Sword for Health? Adv Nutr. 2018 Jan 1, 9 (1), 21–29

A Di Sabatino, R Morera, R Ciccocioppo, P Cazzola, S Gotti, F P Tinozzi, S Tinozzi, G R Corazza. Oral Butyrate for Mildly to Moderately Active Crohn's Disease. Aliment Pharmacol Ther. 2005 Nov 1, 22 (9), 789–94 .

Smith DJ, et al. In vitro dissolution and in vivo absorption of calcium [1–(14)c]butyrate in free or protected forms. J Agric Food Chem 2012.

S J Lewis, K W Heaton. Increasing Butyrate Concentration in the Distal Colon by Accelerating Intestinal Transit. Gut. Aug 1997, 41 (2), 245–51.

Ferreira TM, et al. Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration. Lipids 2012.

Stilling RM, et al. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016 - Review.

Chen X, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol 2017.

En-De Hu, Da-Zhi Chen, Jin-Lu Wu et al. Autoimmune Hepatitis Through Regulation of Immune Regulatory Cells and Intestinal Barrier. Cell Immunol , 328, 24–32. Jun 2018 High Fiber Dietary and Sodium Butyrate Attenuate Experimental

Cleophas, Maartje CP, et al. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Scientific reports 9.1 (2019): 1-10.

Guttae Pepsini

Sherrington, Sarah L., et al. "Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition." PLoS pathogens 13.5 (2017): e1006403.

Perm Plus Coated

Bai, Xiao-Dong, Xian-Hua Liu, and Qing-Ying Tong. "Intestinal colonization with Candida albicans and mucosal immunity." World Journal of Gastroenterology: WJG 10.14 (2004): 2124.

Artemisin Solo

Khatoon, N., et al. "Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles." Journal de mycologie medicale 29.3 (2019): 201-209.

Das, Sourav, et al. "Cytotoxic action of artemisinin and scopoletin on planktonic forms and on biofilms of Candida species." Molecules 25.3 (2020): 476.

De Cremer, Kaat, et al. "Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms." Antimicrobial agents and chemotherapy 59.1 (2015): 421-426.

Lactoferrin Acid Resistant

Fernandes KE, Carter DA. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front Microbiol. 2017;8:2. Published 2017 Jan 18.

González-Chávez, Susana A., et al. "Lactoferrin: Structure, Function and Applications." International Journal of Antimicrobial Agents, vol. 33, no. 4, 2009, pp. 301.e1–301.e8.

Hendrix, Abernethy, Sloane, Misuraca, &. Moore. "Lactoferrin as a Natural Immune Modulator." Bone, vol. 23, no. 1, 2013.

Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother. 1999;43(11):2635-2641.

Kanwar JR, Roy K, Patel Y, et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules. 2015;20(6):9703-9731. Published 2015 May 26.

Komatsu, Akino, et al. "Effects of Bovine Lactoferrin to Oral Candida Albicans and Candida Glabrata Isolates Recovered from the Saliva in Elderly People." Odontology, vol. 103, no. 1, 2013, pp. 50–55.

Kuipers, M. E., et al. "Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against Clinical Candida Isolates." Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, 1999, pp. 2635–41

Nikawa H, Samaranayake LP, Tenovuo J, Pang KM, Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993;38(12):1057-1063.

Takakura N, Wakabayashi H, Ishibashi H, et al. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob Agents Chemother. 2003;47(8):2619-2623. doi:10.1128/AAC.47.8.2619-2623.2003

Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, et al. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules. 2020;25(24):5763. Published 2020 Dec 8.

Microbinate

Bona, Elisa, et al. "Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?"

Burt, Sara A., et al. "The natural antimicrobial carvacrol inhibits quorum sensing Chromobacterium violaceum and reduces bacterial biofilm formation at sub-letl concentrations." PLoS One 9.4 (2014): e93414.

Chaibi, Ahmed, Lahsen H. Ababouch, and Francis F. Busta. "Inhibition of bacterial spores ar vegetative cells by glycerides." Journal of food protection 59.7 (1996): 716–722.

Cleff, Marlete Brum, et al. "In vitro activity of Origanum vulgare essential oil against Candi species." Brazilian Journal of Microbiology 41.1 (2010): 116–123

Flemmig, J., et al. "Olea europaea leaf (Ph. Eur.) extract as well as several of its isolate phenolics inhibit the gout-related enzyme xanthine oxidase." Phytomedicine 18.7 (201 561-566.

Journal of applied microbiology 121.6 (2016): 1530–1545.

Khodavandi, Alireza, et al. "Comparison between efficacy of allicin and fluconazole again Candida albicans in vitro and in a systemic candidiasis mouse model." FEMS microbiolog letters 315.2 (2011): 87–93.

Markin, D., L. Duek, and I. Berdicevsky. "In vitro antimicrobial activity of olive leave Antimikrobielle Wirksamkeit von Olivenblättern in vitro." Mycoses 46.3-4 (2003): 132–136

Peterson, Marnie L., and Patrick M. Schlievert. "Glycerol monolaurate inhibits the effects Gram-positive select agents on eukaryotic cells." Biochemistry 45.7 (2006): 2387–2397.

Pozzatti, Patricia, et al. "In vitro activity of essential oils extracted from plants used as spice against fluconazole-resistant and fluconazole-susceptible Candida spp." Canadian journ of microbiology 54.11 (2008): 950–956.

Schlievert, Patrick M., and Marnie L. Peterson. "Glycerol monolaurate antibacterial activi in broth and biofilm cultures." PloS one 7.7 (2012): e40350.

Shuford, Jennifer A., James M. Steckelberg, and Robin Patel. "Effects of fresh garlic extra on Candida albicans biofilms." Antimicrobial agents and chemotherapy 49.1 (2005): 473 473.

Sudjana, Aurelia N., et al. "Antimicrobial activity of commercial Olea europaea (olive) le extract." International journal of antimicrobial agents 33.5 (2009): 461-463.

Viswanathan, V., A. G. Phadatare, and Alka Mukne. "Antimycobacterial and antibacterial activity of Allium sativum bulbs." Indian journal of pharmaceutical sciences 76.3 (2014): 256.

g in	Physician's Daily
thal	Miroff, George, et al. "Molybdenum for Candida albicans Patients and other Problems." The Digest of Chiropractic Economics Jan-Feb 31 (1991): 4.
and	Elim-A-Cand
dida	Ali Shah, S. M., et al. "Pharmacological Activity of Althaea Officinalis L." Journal of Medicinal Plant Research, vol. 5, no. 24, 2011, pp. 5662–66.
ated 011):	Rajkowska, Katarzyna et al. "Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells." Molecules (Basel, Switzerland) vol. 24,10 1954. 21 May. 2019.
	Samadi, Fahad M et al. "Antifungal efficacy of herbs." Journal of oral biology and craniofacial research vol. 9,1 (2019): 28-32.
ogy	Shahina, Zinnat et al. "Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans." Fungal biology and biotechnology vol. 5 3. 9 Feb. 2018, doi:10.1186/s40694-018-0046-5.
ves. 36.	Taguchi, Yuuki et al. "Effect of cinnamaldehyde on hyphal growth of C. albicans under various treatment conditions." Medical mycology journal vol. 53,3 (2012): 199-204.
s of 7. ices	Taguchi, Yuuki et al. "Therapeutic effects on murine oral candidiasis by oral administration of cassia (Cinnamomum cassia) preparation." Nihon Ishinkin Gakkai zasshi = Japanese journal of medical mycology vol. 51,1 (2010): 13–21.
rnal	Xie, Yufei et al. "In vitro Antifungal Effects of Berberine Against Candida spp. In Planktonic and Biofilm Conditions." Drug design, development and therapy vol. 14 87-101. 9 Jan.
vity	2020.
ract 73-	
leaf	

